अल्ट्राकनेक्टेड स्पेस

From Vigyanwiki
Revision as of 01:26, 14 July 2023 by alpha>Kajal

गणित में, टोपोलॉजिकल समिष्ट को अल्ट्राकनेक्टेड कहा जाता है यदि कोई भी दो गैर-रिक्त विवृत समुच्चय असंयुक्त (समुच्चय) नहीं हैं।[1] सामान्यतः, समिष्ट अल्ट्राकनेक्टेड होता है यदि और केवल तभी जब दो अलग-अलग बिंदुओं के विवृत होने पर सदैव गैर-सामान्य प्रतिच्छेदन होता है। इसलिए, कोई T1 समिष्ट नहीं है | इस प्रकार T1 से अधिक बिंदुओं वाला समिष्ट अल्ट्राकनेक्टेड होता है।[2]


गुण

प्रत्येक अल्ट्राकनेक्टेड समिष्ट पथ कनेक्टेड है (किन्तु आवश्यक नहीं कि आर्क कनेक्टेड हो)। इस प्रकार यदि और के दो बिंदु हैं और द्वारा परिभाषित प्रतिच्छेदन पर बिंदु है , यदि और , और के बीच एक सतत पथ और है [2]

प्रत्येक अल्ट्राकनेक्टेड समिष्ट सामान्य समिष्ट, सीमा बिंदु सघन और स्यूडोकॉम्पैक्ट समिष्ट है।[1]

प्रत्येक अल्ट्राकनेक्टेड स्थान सामान्य, सीमा बिंदु कॉम्पैक्ट और स्यूडोकॉम्पैक्ट है। [1]

उदाहरण

निम्नलिखित अल्ट्राकनेक्टेड टोपोलॉजिकल समिष्ट के उदाहरण हैं।


यह भी देखें

टिप्पणियाँ

  1. 1.0 1.1 PlanetMath
  2. 2.0 2.1 Steen & Seebach, Sect. 4, pp. 29-30
  3. Steen & Seebach, example #50, p. 74


संदर्भ

  • This article incorporates material from Ultraconnected space on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.
  • Lynn Arthur Steen and J. Arthur Seebach, Jr., Counterexamples in Topology. Springer-Verlag, New York, 1978. Reprinted by Dover Publications, New York, 1995. ISBN 0-486-68735-X (Dover edition).