विभेदक अपरिवर्तनीय
गणित में, एक अंतर अपरिवर्तनीय एक स्थान पर एक झूठ समूह की समूह कार्रवाई (गणित) के लिए एक अपरिवर्तनीय सिद्धांत है जिसमें अंतरिक्ष में कार्यों के ग्राफ़ के यौगिक शामिल होते हैं। विभेदक अपरिवर्तक प्रक्षेप्य विभेदक ज्यामिति में मौलिक हैं, और वक्रता का अध्ययन अक्सर इस दृष्टिकोण से किया जाता है।[1] 1880 के दशक की शुरुआत में सोफस झूठ द्वारा विशेष मामलों में डिफरेंशियल इनवेरिएंट पेश किए गए थे और उसी समय जॉर्जेस हेनरी हाल्फेन द्वारा अध्ययन किया गया था। Lie (1884)डिफरेंशियल इनवेरिएंट पर पहला सामान्य कार्य था, और डिफरेंशियल इनवेरिएंट, इनवेरिएंट डिफरेंशियल समीकरण और अपरिवर्तनीय अंतर ऑपरेटर ों के बीच संबंध स्थापित किया।
विभेदक अपरिवर्तनीयों की तुलना ज्यामितीय अपरिवर्तनीयों से की जाती है। जबकि विभेदक अपरिवर्तकों में स्वतंत्र चर (या पैरामीटरकरण) का एक विशिष्ट विकल्प शामिल हो सकता है, ज्यामितीय अपरिवर्तकों में ऐसा नहीं होता है। एली कार्टन की फ़्रेमों को हिलाने की विधि एक शोधन है, जो ले के विभेदक अपरिवर्तकों के तरीकों की तुलना में कम सामान्य है, फिर भी हमेशा ज्यामितीय प्रकार के अपरिवर्तक उत्पन्न करती है।
परिभाषा
सबसे सरल मामला एक स्वतंत्र चर x और एक आश्रित चर y के लिए विभेदक अपरिवर्तनीयों का है। मान लीजिए G 'R' पर कार्य करने वाला एक झूठ समूह है2. फिर G, स्थानीय रूप से, y = ƒ(x) फॉर्म के सभी ग्राफ़ के स्थान पर भी कार्य करता है। मोटे तौर पर कहें तो, k-वें क्रम का अंतर अपरिवर्तनीय एक फ़ंक्शन है
x के संबंध में y और इसके पहले k डेरिवेटिव पर निर्भर करता है, जो कि समूह की कार्रवाई के तहत अपरिवर्तनीय है।
समूह उच्च-क्रम डेरिवेटिव पर गैर-तुच्छ तरीके से कार्य कर सकता है जिसके लिए समूह कार्रवाई की लम्बाई की गणना करने की आवश्यकता होती है। उदाहरण के लिए, पहले व्युत्पन्न पर G की क्रिया ऐसी है कि श्रृंखला नियम कायम रहता है: यदि
तब
उच्च दीर्घावधियों की गणना के लिए भी इसी तरह के विचार लागू होते हैं। हालाँकि, दीर्घीकरण की गणना करने की यह विधि अव्यावहारिक है, और जी क्रिया के साथ लाई बीजगणित और लाई व्युत्पन्न के स्तर पर असीम रूप से काम करना बहुत आसान है।
अधिक आम तौर पर, कार्टेशियन उत्पाद X×Y पर अभिनय करने वाले लाई समूह के लिए किसी भी चिकनी कई गुना मानचित्रण(k) जिसमें k-वें क्रम के संपर्क के संबंध में प्रत्येक बिंदु मॉड्यूलो से गुजरने वाले ग्राफ़ शामिल हैं। एक विभेदक अपरिवर्तनीय Y पर एक फ़ंक्शन है(के) जो समूह कार्रवाई के विस्तार के तहत अपरिवर्तनीय है।
अनुप्रयोग
- समतुल्यता समस्याओं का समाधान
- आंशिक अंतर समीकरणों की प्रणालियों के अध्ययन के लिए विभेदक अपरिवर्तनीयों को लागू किया जा सकता है: किसी विशेष समूह की कार्रवाई के तहत अपरिवर्तनीय समानता वाले समाधानों की तलाश करने से समस्या का आयाम कम हो सकता है (यानी एक कम प्रणाली उत्पन्न हो सकती है)।[2]
- नोएदर का प्रमेय विभिन्नताओं के कलन की प्रत्येक अवकलनीय समरूपता के अनुरूप विभेदक अपरिवर्तनीयों के अस्तित्व का तात्पर्य करता है।
- कंप्यूटर दृष्टि का उपयोग करके द्रव गतिकी[3]
- ज्यामितीय समाकलक
यह भी देखें
- कार्टन की तुल्यता विधि
टिप्पणियाँ
- ↑ Guggenheimer 1977
- ↑ Olver 1995, Chapter 3
- ↑ Olver, Peter; Sapiro, Guillermo; Tannenbaum, Allen (1994). "Differential Invariant Signatures and Flows in Computer Vision: A Symmetry Group Approach". कंप्यूटर विज़न में ज्यामिति-संचालित प्रसार. Computational Imaging and Vision. Vol. 1. Dordrecht: Springer. pp. 255–306. doi:10.1007/978-94-017-1699-4_11. ISBN 90-481-4461-2.
संदर्भ
- Guggenheimer, Heinrich (1977), Differential Geometry, New York: Dover Publications, ISBN 978-0-486-63433-3.
- Lie, Sophus (1884), "Über Differentialinvarianten", Gesammelte Adhandlungen, vol. 6, Leipzig: B.G. Teubner, pp. 95–138; English translation: Ackerman, M; Hermann, R (1975), Sophus Lie's 1884 Differential Invariant Paper, Brookline, Mass.: Math Sci Press.
- Olver, Peter J. (1993), Applications of Lie groups to differential equations (2nd ed.), Berlin, New York: Springer-Verlag, ISBN 978-0-387-94007-6.
- Olver, Peter J. (1995), Equivalence, Invariants, and Symmetry, Cambridge University Press, ISBN 978-0-521-47811-3.
- Mansfield, Elizabeth Louise (2009), A Practical Guide to the Invariant Calculus (PDF)[permanent dead link]; to be published by Cambridge 2010, ISBN 978-0-521-85701-7.