सातत्य (समुच्चय सिद्धांत)

From Vigyanwiki
Revision as of 09:09, 16 July 2023 by Manidh (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

समुच्चय सिद्धांत के गणितीय क्षेत्र में, सातत्य का अर्थ वास्तविक संख्याएं, या संबंधित (अनंत) गणनांक संख्या है, जिसे के द्वारा दर्शाया जाता है।[1][2] जॉर्ज कैंटर ने सिद्ध किया कि गणनांक सबसे छोटी अनंतता, अर्थात् से बड़ी है। उन्होंने यह भी सिद्ध किया कि के बराबर है, जो प्राकृतिक संख्याओं के घात समुच्चय की प्रमुखता है।

सातत्य की प्रमुखता वास्तविक संख्याओं के समुच्चय का आकार है। सातत्य परिकल्पना को कभी-कभी यह कहकर कहा जाता है कि सातत्य और प्राकृतिक संख्याओं , या वैकल्पिक रूप से, के बीच कोई प्रमुखता नहीं है।[1]

रेखीय सातत्य

रेमंड वाइल्डर (1965) के अनुसार, चार अभिगृहीत हैं जो एक समुच्चय C और संबंध < को एक रैखिक सातत्य में बनाते हैं:

  • C को < के संबंध में आदेशित किया जाता है।
  • यदि [A,B] C का कट है, तो या तो A में अंतिम अवयव है या B में पहला अवयव है। (डेडेकाइंड कट की तुलना करें)
  • C का एक गैर-रिक्त, गणनीय उपसमुच्चय S उपस्थित है, जैसे कि, यदि x, y ∈ C ऐसा है कि x < y, तो z ∈ S उपस्थित है जैसे कि x < z < y। (पृथक्करण स्वयंसिद्ध)
  • C में कोई पहला अवयव और कोई अंतिम अवयव नहीं है। (असीमितता स्वयंसिद्ध)
  • C का कोई पहला अवयव और कोई अंतिम अवयव नहीं है। (बंधा हुआ समुच्चय)

ये अभिगृहीत वास्तविक संख्या रेखा के क्रम प्रकार को दर्शाते हैं।

यह भी देखें

  • अलेफ़ नल
  • सुस्लिन की समस्या
  • अपरिमेय संख्या

संदर्भ

  1. 1.0 1.1 Weisstein, Eric W. "सातत्य". mathworld.wolfram.com (in English). Retrieved 2020-08-12.
  2. "Transfinite number | mathematics". Encyclopedia Britannica (in English). Retrieved 2020-08-12.

ग्रन्थसूची

  • Raymond L. Wilder (1965) The Foundations of Mathematics, 2nd ed., page 150, John Wiley & Sons.