सर्जरी सिद्धांत

From Vigyanwiki
Revision as of 12:26, 14 July 2023 by alpha>Sugatha

गणित में, विशेष रूप से ज्यामितीय सांस्थितिकी में, सर्जरी सिद्धांत तकनीकों का एक संग्रह है जिसका उपयोग जॉन मिल्नोर (1961) द्वारा प्रारम्भ किए गए 'नियंत्रित' तरीके से एक परिमित-आयामी बहुरूपता को दूसरे से उत्पन्न करने के लिए किया जाता है। मिल्नोर ने इस तकनीक को सर्जरी कहा है, जबकि एंड्रयू वालेस ने इसे गोलीय रूपांतरण कहा है।[1] आयाम की भिन्न-भिन्न बहुरूपता M पर "सर्जरी" को M से आयाम p के अंतर्निहित क्षेत्र को हटाने के रूप में वर्णित किया जा सकता है।[2] मूल रूप से अलग-अलग (या, निष्कोण) बहुरूपताओं के लिए विकसित की गई, सर्जरी तकनीक खंडशः रैखिक (पीएल-) और सांस्थितिक बहुरूपताओं पर भी लागू होती है।

सर्जरी से तात्पर्य बहुरूपता के कुछ भागों को काटने और कट या सीमा के साथ मेल खाते हुए दूसरी बहुरूपता के भाग से बदलने से है। यह हैंडलबॉडी अपघटन से निकटता से संबंधित है, लेकिन इसके समान नहीं है।

अधिक तकनीकी रूप से, विचार अच्छी तरह से समझी गई बहुरूपता M से प्रारम्भ करना है और कुछ वांछित गुण वाली बहुरूपता M′' का उत्पादन करने के लिए इस पर सर्जरी करें, इस तरह से कि सजातीय, समस्थेयता समूहों, या बहुरूपता के अन्य अपरिवर्तनीयों पर प्रभाव ज्ञात हो। मोर्स सिद्धांत का उपयोग करते हुए अपेक्षाकृत आसान तर्क से पता चलता है कि गोलीय रूपांतरणों के अनुक्रम द्वारा एक दूसरे से कई गुना प्राप्त किया जा सकता है यदि और केवल तभी जब वे दोनों एक ही सह-बॉर्डिज्म वर्ग से संबंधित हों।[1]

मिशेल केर्वेयर और मिल्नोर (1963) द्वारा असाधारण क्षेत्रों के वर्गीकरण ने उच्च-आयामी सांस्थितिकी में एक प्रमुख उपकरण के रूप में सर्जरी सिद्धांत के उद्भव को उन्नति दी।

बहुरूपता पर सर्जरी

मूल अवलोकन

यदि X, Y सीमा सहित बहुरूपता हैं, तो उत्पाद बहुरूपता की सीमा है

मूल अवलोकन जो सर्जरी को उचित ठहराता है वह यह है कि अंतराल को या तो की सीमा या की सीमा के रूप में समझा जा सकता है। प्रतीकों में,

,

जहां q-आयामी डिस्क है, अर्थात, में बिंदुओं का समुच्चय जो किसी दिए गए निश्चित बिंदु (डिस्क के केंद्र) से एक या उससे कम दूरी पर है उदाहरण के लिए, फिर, इकाई अंतराल के लिए समरूप है, जबकि इसके आंतरिक बिंदुओं के साथ वृत्त है।

सर्जरी

अब, आयाम की बहुरूपता M और अंतःस्थापन दिया गया है, एक और n-आयामी बहुरूपता को परिभाषित करें

चूंकि और हमारे मूल अवलोकन से पहले समीकरण से, ग्लूइंग तब उचित है

एक का कहना है कि बहुरूपता M′ का निर्माण सर्जरी द्वारा को काटकर में चिपकाने से किया जाता है, या यदि कोई संख्या p निर्दिष्ट करना चाहता है तो p-सर्जरी द्वारा किया जाता है। दृढ़ता से बोलते हुए, M′ कोनों वाली बहुरूपता है, लेकिन उन्हें निष्कोण करने का एक विहित तरीका है। ध्यान दें कि M में प्रतिस्थापित किया गया उपबहुरूपता M (यह कोड आयाम 0 का था) के समान आयाम का था।

हैंडल और कोबॉर्डिज्म जोड़ना

सर्जरी का हैंडल जोड़ने से गहरा संबंध (लेकिन उसके समान नहीं) है। (n + 1)-सीमा (L, ∂L) के साथ बहुरूपता और अंतःस्थापन : Sp × Dq → ∂L, जहां n = p + q दिया गया है, सीमा L′ के साथ एक और (n + 1)-बहुरूपताओं को परिभाषित करें।

बहुरूपता L′ को "(p + 1)-हैंडल जोड़कर" प्राप्त किया जाता है, जिसमें ∂L′ को p-सर्जरी द्वारा ∂L से प्राप्त किया जाता है।

M पर सर्जरी न केवल नई बहुरूपता M′ उत्पन्न करती है, बल्कि M और M′ के बीच सह-बॉर्डिज्म W भी उत्पन्न करती है। सर्जरी का चिह्न कोबॉर्डिज्म (W; M, M′) है, साथ में

(n + 1)-सीमा ∂W = MM′ के साथ आयामी बहुरूपता, उत्पाद M × I से (p + 1)-हैंडल Dp+1 × Dq संलग्न करके प्राप्त किया जाता है।

सर्जरी इस अर्थ में सममित है कि बहुरूपता M को M′ से (q − 1)-सर्जरी द्वारा पुनः प्राप्त किया जा सकता है, जिसका चिह्न अभिविन्यास तक, मूल सर्जरी के चिह्न के साथ मेल खाता है।

अधिकांश अनुप्रयोगों में, बहुरूपता M अतिरिक्त ज्यामितीय संरचना के साथ आता है, जैसे कि कुछ संदर्भ अंतराल का मानचित्र, या अतिरिक्त बंडल डेटा। फिर कोई चाहता है कि सर्जरी प्रक्रिया M′ को उसी प्रकार की अतिरिक्त संरचना प्रदान करे। उदाहरण के लिए, सर्जरी सिद्धांत में मानक उपकरण सामान्य मानचित्रों पर सर्जरी है- ऐसी प्रक्रिया सामान्य मानचित्र को उसी बोर्डिज्म वर्ग के भीतर दूसरे सामान्य मानचित्र में बदल देती है।

उदाहरण

  1. Surgery on the circle
    Fig. 1

    As per the above definition, a surgery on the circle consists of cutting out a copy of S0 × D1 and gluing in D1 × S0. The pictures in Fig. 1 show that the result of doing this is either (i) S1 again, or (ii) two copies of S1.

    Fig. 2a
    Fig. 2b
  2. Surgery on the 2-sphere

    In this case there are more possibilities, since we can start by cutting out either S1 × D1 or S0 × D2.

    1. S1 × D1: If we remove a cylinder from the 2-sphere, we are left with two disks. We have to glue back in S0 × D2 – that is, two disks – and it is clear that the result of doing so is to give us two disjoint spheres. (Fig. 2a)
      Fig. 2c. This shape cannot be embedded in 3-space.
    2. S0 × D2: Having cut out two disks S0 × D2, we glue back in the cylinder S1 × D1. There are two possible outcomes, depending on whether our gluing maps have the same or opposite orientation on the two boundary circles. If the orientations are the same (Fig. 2b), the resulting manifold is the torus S1 × S1, but if they are different, we obtain the Klein Bottle (Fig. 2c).
  3. Surgery on the n-sphere

    If n = p + q, then

    .

    The p-surgery on Sn is therefore

    .
    Examples 1 and 2 above were a special case of this.
  4. Morse functions Suppose that f is a Morse function on an (n + 1)-dimensional manifold, and suppose that c is a critical value with exactly one critical point in its preimage. If the index of this critical point is p + 1, then the level-set is obtained from by a p-surgery. The bordism can be identified with the trace of this surgery. Indeed, in some coordinate chart around the critical point, the function f is of the form , with , and p + q + 1 = n + 1. Fig. 3 shows, in this local chart, the manifold M in blue and the manifold M′ in red. The colored region between M and M′ corresponds to the bordism W. The picture shows that W is diffeomorphic to the union
    (neglecting the issue of straightening corners), where M × I is colored in yellow, and is colored in green. The manifold M′, being a boundary component of W, is therefore obtained from M by a p-surgery. Since every bordism between closed manifolds has a Morse function where different critical points have different critical values, this shows that any bordism can be decomposed into traces of surgeries (handlebody decomposition). In particular, every manifold M may be regarded as a bordism from the boundary ∂M (which may be empty) to the empty manifold, and so may be obtained from ∂M × I by attaching handles.

समरूप समूहों पर प्रभाव, और सेल-संलग्न से तुलना

सहज रूप से, सर्जरी की प्रक्रिया सेल को सांस्थितिक अंतराल से जोड़ने की बहुरूपता अनुरूप है, जहां अंतःस्थापन φ संलग्न मानचित्र की जगह लेता है। (p + 1)-सेल का n-बहुरूपता से साधारण संलग्न आयाम कारणों से बहुरूपता संरचना को नष्ट कर देगा, इसलिए इसे किसी अन्य सेल के साथ प्रतिच्छेद करके मोटा होना होगा।

समरूप तक, अंतःस्थापन φ: Sp × DqM पर सर्जरी की प्रक्रिया को (p + 1)-सेल के संलग्न के रूप में वर्णित किया जा सकता है, चिह्न का समरूप प्रकार देना, और N प्राप्त करने के लिए q-सेल को अलग करना। पृथक्करण प्रक्रिया की आवश्यकता को पोनकारे द्वैत के प्रभाव के रूप में समझा जा सकता है।

उसी तरह जैसे अंतराल के किसी समरूप समूह में किसी तत्व को मारने के लिए किसी अंतराल से सेल को जोड़ा जा सकता है, उसी तरह बहुरूपता M पर p-सर्जरी का उपयोग प्रायः तत्व को मारने के लिए किया जा सकता है। हालाँकि, दो बिंदु महत्वपूर्ण हैं- सबसे पहले, तत्व को अंतःस्थापन φ: Sp × DqM (जिसका अर्थ है साधारण सामान्य बंडल के साथ संबंधित क्षेत्र का अंतःस्थापन करना) द्वारा प्रस्तुत किया जाना चाहिए। उदाहरण के लिए, अभिविन्यास-उत्क्रमी लूप पर सर्जरी करना संभव नहीं है। मोटे तौर पर कहें तो, यह दूसरा बिंदु केवल तभी महत्वपूर्ण है जब p कम से कम M के आधे आयाम के क्रम का है।

बहुरूपताओं के वर्गीकरण के लिए अनुप्रयोग

सर्जरी सिद्धांत की उत्पत्ति और मुख्य अनुप्रयोग चार से अधिक आयामों की बहुरूपताओं के वर्गीकरण में निहित है। शिथिल रूप से, सर्जरी सिद्धांत के संगठनात्मक प्रश्न हैं-

  • क्या X बहुरूपता है?
  • क्या f भिन्नरूपता है?

अधिक औपचारिक रूप से, कोई ये प्रश्न समरूपता तक पूछता है-

  • क्या अंतराल X में किसी दिए गए आयाम की निष्कोण बहुरूपता का समरूपता प्रकार होती है?
  • क्या दो निष्कोण बहुरूपताओं के बीच समरूप समतुल्यता f: MN भिन्नरूपता के लिए समरूप है?

यह पता चला है कि दूसरा ("विशिष्टता") प्रश्न पहले ("अस्तित्व") प्रकार के प्रश्न का सापेक्ष संस्करण है इस प्रकार दोनों प्रश्नों का समाधान एक ही तरीके से किया जा सकता है।

ध्यान दें कि सर्जरी सिद्धांत इन प्रश्नों के लिए अपरिवर्तनीयताओं का पूरा समुच्चय नहीं देता है। इसके स्थान पर, यह अवरोध-सैद्धांतिक है- प्राथमिक अवरोध है, और माध्यमिक अवरोध है जिसे सर्जरी अवरोध कहा जाता है जिसे केवल तभी परिभाषित किया जाता है जब प्राथमिक अवरोध विलुप्त हो जाता है, और जो प्राथमिक अवरोध विलुप्त होने की पुष्टि करने में किए गए चुनाव पर निर्भर करता है।

सर्जरी दृष्टिकोण

चिरसम्मत दृष्टिकोण में, जैसा कि विलियम ब्राउनर, सर्गेई नोविकोव, डेनिस सुलिवन और सी. टी. सी. वॉल द्वारा विकसित किया गया है, सर्जरी डिग्री एक के सामान्य मानचित्रों पर की जाती है। सर्जरी का उपयोग करते हुए, प्रश्न "क्या सामान्य मानचित्र f: MX डिग्री एक कोबॉर्डेंट समस्थेयता समकक्ष के बराबर है?" समूह वलय के एल (L)-समूह में कुछ तत्व के बारे में बीजगणितीय कथन में अनुवाद (चार से अधिक आयामों में) किया जा सकता है। अधिक सटीक रूप से, प्रश्न का उत्तर सकारात्मक है यदि और केवल तभी जब सर्जरी अवरोध शून्य हो, जहां n M का आयाम है।

उदाहरण के लिए, उस स्थिति पर विचार करें जहां आयाम n = 4k चार का एक गुणज है, और है। यह ज्ञात है कि पूर्णांक के लिए समरूपी है इस समरूपता के तहत f की सर्जरी अवरोध X और M के हस्ताक्षर के अंतर के समानुपाती होता है। इसलिए डिग्री एक का सामान्य मानचित्र समस्थेयता तुल्यता के अनुरूप है यदि और केवल तभी जब डोमेन और कोडोमेन के हस्ताक्षर सहमत हों।

ऊपर से "अस्तित्व" प्रश्न पर वापस आते हुए, हम देखते हैं कि अंतराल X में निष्कोण बहुरूपता का समस्थेयता प्रकार होता है यदि और केवल तभी जब इसे डिग्री एक का सामान्य मानचित्र प्राप्त होता है जिसकी सर्जरी अवरोध विलुप्त हो जाता है। यह बहु-चरणीय अवरोध प्रक्रिया की ओर ले जाता है- सामान्य मानचित्रों के बारे में बात करने के लिए, X को पोंकारे द्वैत के उपयुक्त संस्करण को संतुष्ट करना होगा जो इसे पोंकारे संकुल में बदल देता है। यह मानते हुए कि X पोंकारे संकुल है, पोंट्रीगिन-थॉम निर्माण से पता चलता है कि डिग्री एक से X का सामान्य मानचित्र उपस्थित है यदि और केवल तभी जब X के स्पिवक सामान्य फाइब्रेशन में स्थिर सदिश बंडल में कमी होती है। यदि डिग्री एक से X तक के सामान्य मानचित्र उपस्थित हैं, तो उनके बोर्डिज्म वर्ग (जिन्हें सामान्य अपरिवर्तनीय कहा जाता है) को समस्थेयता वर्गों के समुच्चय द्वारा वर्गीकृत किया जाता है। इनमें से प्रत्येक सामान्य अपरिवर्तनीय में सर्जरी में अवरोध होता है X में निष्कोण बहुरूपता की समस्थेयता प्रकार है यदि और केवल यदि इनमें से अवरोध शून्य है। अलग प्रकार से कहा गया है, इसका अर्थ है कि सर्जरी अवरोध मानचित्र के तहत शून्य चित्र के साथ सामान्य अपरिवर्तनीय का विकल्प है

संरचना समुच्चय और सर्जरी सटीक अनुक्रम

संरचना समुच्चय की अवधारणा अस्तित्व और विशिष्टता दोनों प्रश्नों के लिए एकीकृत रूपरेखा है। मोटे तौर पर कहें तो, अंतराल X के संरचना समुच्चय में कुछ बहुरूपता से X तक समस्थेयता समतुल्य MX सम्मिलित हैं, जहां दो मानचित्रों को बोर्डिज्म-प्रकार के संबंध के तहत पहचाना जाता है। किसी अंतराल X के संरचना समुच्चय के गैर-रिक्त होने के लिए आवश्यक (लेकिन सामान्य तौर पर पर्याप्त नहीं) शर्त यह है कि X n-आयामी पोंकारे संकुल हो, अर्थात कि समरूपता और सह-समरूपता समूह कुछ पूर्णांक n के लिए, n-आयामी बहुरूपता के समरूपता से संबंधित होते हैं। सटीक परिभाषा और बहुरूपताओं की श्रेणी (निष्कोण, पीएल (PL), या सांस्थितिक) के आधार पर, संरचना समुच्चय के विभिन्न संस्करण हैं। चूंकि, s-कोबॉर्डिज्म प्रमेय के अनुसार, बहुरूपताओं के बीच कुछ बोर्डिज्म सिलेंडरों के लिए समरूपी (संबंधित श्रेणी में) होते हैं, संरचना समुच्चय की अवधारणा भिन्नता तक भी वर्गीकरण की अनुमति देती है।

संरचना समुच्चय और सर्जरी अवरोध मानचित्र को सर्जरी के सटीक अनुक्रम में एक साथ लाया जाता है। एक बार सर्जरी अवरोध मानचित्र (और इसका सापेक्ष संस्करण) समझ में आने के बाद यह अनुक्रम पोंकारे संकुल के संरचना समुच्चय को निर्धारित करने की अनुमति देता है। महत्वपूर्ण स्थितियों में, सर्जरी के सटीक अनुक्रम के माध्यम से निष्कोण या सांस्थितिक संरचना समुच्चय की गणना की जा सकती है। उदाहरण असाधारण क्षेत्रों का वर्गीकरण, और अतिशयोक्तिपूर्ण मौलिक समूह के साथ ऋणात्मक रूप से घुमावदार बहुरूपताओं और बहुरूपताओं के लिए बोरेल अनुमान के प्रमाण हैं।

सांस्थितिक श्रेणी में, सर्जरी सटीक अनुक्रम स्पेक्ट्रा के फाइब्रेशन अनुक्रम से प्रेरित दीर्घ सटीक अनुक्रम है। इसका तात्पर्य यह है कि अनुक्रम में सम्मिलित सभी समुच्चय वास्तव में एबेलियन समूह हैं। स्पेक्ट्रम स्तर पर, सर्जरी अवरोध मानचित्र अन्वायोजन मानचित्र है जिसकी फाइबर संबंधित बहुरूपता का ब्लॉक संरचना अंतराल है।

यह भी देखें

उद्धरण

  1. 1.0 1.1 Milnor 2007, p. 6.
  2. Milnor 2007, p. 39.

संदर्भ

बाहरी संबंध