मॉड्यूल का प्रत्यक्ष योग

From Vigyanwiki
Revision as of 13:00, 14 July 2023 by alpha>Jyotimehta

अमूर्त बीजगणित में, प्रत्यक्ष योग एक निर्माण है जो कई मापांकों को एक नए, बड़े मापांक में जोड़ता है। मापांकों का प्रत्यक्ष योग सबसे छोटा मापांक होता है जिसमें दिए गए मापांकों को बिना किसी अनावश्यक बाधा के उप-मापांकों के रूप में सम्मिलित किया जाता है, जो इसे सह-गुणन का एक उदाहरण बनाता है। प्रत्यक्ष गुणन के साथ तुलना करें, जो दोहरी धारणा है।

इस निर्माण के सबसे परिचित उदाहरण तब मिलते हैं जब सदिश समष्टियों (एक क्षेत्र पर मापांक) और अबेलियन समूहों (पूर्णांक के वलय Z पर मापांक) पर विचार करते हैं। निर्माण को बानाख समष्टियों और हिल्बर्ट समष्टियों को समाविष्ट करने के लिए भी बढ़ाया जा सकता है।

किसी मापांक को उप-मापांक के प्रत्यक्ष योग के रूप में लिखने के तरीके के लिए मापांक का अपघटन लेख देखें।

सदिश समष्टियों और अबेलियन समूहों के लिए निर्माण

हम इन दो स्थितियों में पहले निर्माण देते हैं, इस धारणा के अंतर्गत कि हमारे पास केवल दो वस्तुएं हैं। फिर हम यादृच्छिक मापांक के एक यादृच्छिक वर्ग का सामान्यीकरण करते हैं। इन दो स्थितियों पर गहनता से विचार करने पर सामान्य निर्माण के प्रमुख तत्वों को अधिक स्पष्ट रूप से पहचाना जाता है।

दो सदिश समष्टियों का निर्माण

मान लीजिए कि V और W, क्षेत्र K के ऊपर सदिश समष्टि हैं। कार्तीय गुणन V × W को संचालन को घटकवार परिभाषित करके, K (हल्मोस 1974, §18) के ऊपर एक सदिश समष्टि की संरचना दी जा सकती है।

  • (v1, w1) + (v2, w2) = (v1 + v2, w1 + w2)
  • α (v, w) = (α v, α w)

v, v1, v2V, w, w1, w2W, और αK के लिएː

परिणामी सदिश समष्टि को V और W का प्रत्यक्ष योग कहा जाता है और इसे सामान्यतः एक वृत्त के भीतर धन चिह्न द्वारा दर्शाया जाता है:

किसी क्रमित योग के तत्वों को क्रमित युग्म (v, w) के रूप में नहीं, बल्कि योग v + w के रूप में लिखने की प्रथा है।

V ⊕ W की उपसमष्टि V × {0}, V की समरूपी है और इसी प्रकार {0} × W और W के लिए, प्रायः इसे V से पहचाना जाता है (नीचे आंतरिक प्रत्यक्ष योग देखें)। इस पहचान के साथ, V ⊕ W के प्रत्येक तत्व को V के एक तत्व और W के एक तत्व के योग के रूप में एक और केवल एक ही तरीके से लिखा जा सकता है। V ⊕ W के सदिश समष्टि का आयाम V और W के आयामों के योग के बराबर है। एक प्राथमिक उपयोग किसी भी उपसमष्टि W और उसके लंबकोणीय पूरक से एक परिमित सदिश समष्टि का पुनर्निर्माण है:

यह निर्माण सदिश समष्टियों की किसी भी सीमित संख्या को सरलता से सामान्यीकृत करता है।

दो अबेलियन समूहों के लिए निर्माण

अबेलियन समूहों G और H के लिए जो योगात्मक रूप से लिखे गए हैं, G और H के प्रत्यक्ष गुणन को प्रत्यक्ष योग (मैक लेन और बिरखॉफ 1999, §वी.6) भी कहा जाता है। इस प्रकार कार्तीय गुणन G × H संचालन को घटकवार परिभाषित करके एक अबेलियन समूह की संरचना से सुसज्जित है:

(g1, h1) + (g2, h2) = (g1 + g2, h1 + h2)

G में g1, g2 और H में h1, h2 के लिएː

समाकल गुणकों को समान रूप से घटकवार परिभाषित किया जाता हैː

n(g, h) = (ng, nh)

G में g, H में h और n एक पूर्णांक है। यह सदिश समष्टियों के अदिश गुणनफल के विस्तार को उपरोक्त प्रत्यक्ष योग के समानांतर करता है।

परिणामी अबेलियन समूह को G और H का प्रत्यक्ष योग कहा जाता है और इसे सामान्यतः एक वृत्त के भीतर धन चिह्न द्वारा दर्शाया जाता है:

किसी क्रमित योग के तत्वों को क्रमित युग्म (g, h) के रूप में नहीं, बल्कि योग g + h के रूप में लिखने की प्रथा है।

G ⊕ H का उपसमूह G × {0}, G के समरूपी है और इसी प्रकार {0} × H और H के लिए, प्रायः इसे G के साथ पहचाना जाता है (नीचे आंतरिक प्रत्यक्ष योग देखें)। इस पहचान के साथ, यह सत्य है कि G ⊕ H के प्रत्येक तत्व को G और H का एक तत्व के एक तत्व के योग के रूप में एक और केवल एक ही तरीके से लिखा जा सकता है। G ⊕ H के अबेलियन समूह की श्रेणी G और H की श्रेणी के योग के बराबर है।

यह निर्माण अबेलियन समूहों की किसी भी सीमित संख्या को सरलता से सामान्यीकृत करता है।

मापांक के एक यादृच्छिक वर्ग के लिए निर्माण

किसी को दो सदिश समष्टियों और दो अबेलियन समूहों के प्रत्यक्ष योग की परिभाषाओं के मध्य स्पष्ट समानता पर ध्यान देना चाहिए। वास्तव में, प्रत्येक दो मापांकों के प्रत्यक्ष योग के निर्माण की एक विशेष स्थिति है। इसके अतिरिक्त, परिभाषा को संशोधित करके कोई मापांकों के अनंत वर्ग के प्रत्यक्ष योग को समायोजित कर सकता है। सटीक परिभाषा इस प्रकार है (बोरबाकी 1989, §II.1.6)।

मान लीजिए कि R एक वलय और {Mi: i ∈ I} समुच्चय द्वारा अनुक्रमित बाएं R-मापांकों का एक वर्ग है। फिर {Mi} के प्रत्यक्ष योगों को सभी अनुक्रमों के समुच्चय के रूप में, जहाँ और असीम रूप से अनेक सूचकांकों i के लिए परिभाषित किया गया है I प्रत्यक्ष गुणन अनुरूप है परन्तु सूचकांकों को निश्चित रूप से लुप्त होने की आवश्यकता नहीं है।

इसे I से मापांक Mi के असंयुक्त संघ तक फलन α के रूप में भी परिभाषित किया जा सकता है जैसे कि सभी i ∈ I के लिए α(i)∈Mi और असीम रूप से अनेक सूचकांकों i के लिए α(i) = 0 है। इन फलनों को समान रूप से सूचकांक समुच्चय I पर, फाइबर में उपस्थित के साथ फाइबर समूह के अंतिम रूप से समर्थित अनुभागों के रूप में माना जा सकता है।

यह समुच्चय घटक-वार जोड़ और अदिश गुणन के माध्यम से मापांक संरचना प्राप्त करता है। स्पष्ट रूप से, ऐसे दो अनुक्रम (या फलन) α और β को लिखकर जोड़ा जा सकता है, सभी i के लिए (ध्यान दें कि यह फिर से सभी परन्तु सीमित रूप से कई सूचकांकों के लिए शून्य है) और ऐसे फलनों को परिभाषित करके R से एक तत्व r के साथ गुणा किया जा सकता है। इस प्रकार, प्रत्यक्ष योग बाएँ R-मापांक बन जाता है और इसे दर्शाया जाता हैː

एक योग के रूप में, क्रम लिखने की प्रथा है। कभी-कभी एक प्रारंभिक सारांश का उपयोग यह इंगित करने के लिए किया जाता है कि निश्चित रूप से कई पद शून्य हैं।

गुणधर्म

  • प्रत्यक्ष योग मापांक Mi (बोरबाकी 1989, §II.1.7) के प्रत्यक्ष गुणन का एक उप-मापांक है। प्रत्यक्ष गुणन I से लेकर α(i)∈Mi के साथ मापांक Mi के असंयुक्त संघ तक सभी फलनों α का समुच्चय है, परन्तु आवश्यक नहीं कि सभी के लिए लुप्त हो जाए, परन्तु सीमित रूप से कई i लुप्त हो जाए। यदि सूचकांक समुच्चय I परिमित है, तो प्रत्यक्ष योग और प्रत्यक्ष गुणन बराबर हैं।
  • प्रत्येक मापांक Mi को प्रत्यक्ष योग के उप-मापांकों के साथ पहचाना जा सकता है जिसमें वे फलन सम्मिलित होते है जो i से भिन्न सभी सूचकांकों पर लुप्त हो जाते हैं। इन पहचानों के साथ, प्रत्यक्ष योग के प्रत्येक तत्व x को मापांक Mi से सीमित कई तत्वों के योग के रूप में एक और केवल एक ही तरीके से लिखा जा सकता है।
  • यदि Mi वास्तव में सदिश समष्टि हैं, तो प्रत्यक्ष योग का आयाम Mi के आयामों के योग के बराबर है। अबेलियन समूहों की श्रेणी और मापांकों की लंबाई के लिए भी यही सत्य है।
  • क्षेत्र K के ऊपर प्रत्येक सदिश समष्टि K की पर्याप्त संख्या में प्रतियों के प्रत्यक्ष योग के समरूपी है, इसलिए एक अर्थ में केवल इन प्रत्यक्ष योगों पर ही विचार करना होगा। यह यादृच्छिक वलयों से अधिक मापांकों के लिए सत्य नहीं है।
  • प्रदिश गुणन निम्नलिखित अर्थों में प्रत्यक्ष योगों पर वितरित होता है: यदि N कुछ दाएं R-मापांक है, तो Mi (जो अबेलियन समूह हैं) के साथ N के प्रदिश गुणनों का प्रत्यक्ष योग स्वाभाविक रूप से Mi के प्रत्यक्ष योग के साथ N के प्रदिश गुणन के लिए समरूपी है।
  • प्रत्यक्ष योग क्रमविनिमेय और साहचर्य (समरूपता तक) होते हैं, जिसका अर्थ है कि इससे कोई फर्क नहीं पड़ता कि कोई किस क्रम में प्रत्यक्ष योग बनाता है।
  • R-रैखिक समरूपता का अबेलियन समूह प्रत्यक्ष योग से कुछ बाएं R-मापांक L तक, Mi से R-रैखिक समरूपता के अबेलियन समूहों के प्रत्यक्ष गुणन के लिए स्वाभाविक रूप से समरूपी है।
    वास्तव में, बाईं ओर से दाईं ओर स्पष्ट रूप से एक समरूपता τ है, जहां τ(θ)(i) R-रैखिक समरूपता है जो x∈Mi को θ(x) पर (Mi के प्राकृतिक समावेशन का उपयोग करके प्रत्यक्ष योग में) भेजती है। समरूपता का व्युत्क्रम τ द्वारा परिभाषित किया गया हैː
    मापांक Mi के प्रत्यक्ष योग में किसी भी α के लिए है। मुख्य बिंदु यह है कि τ−1 की परिभाषा समझ में आती है क्योंकि α(i) सीमित रूप से अनेक i को छोड़कर सभी के लिए शून्य है और इसलिए योग परिमित है।
    विशेष रूप से, सदिश समष्टियों के प्रत्यक्ष योग की दोहरी समष्टि उन समष्टियों के दोहरे के प्रत्यक्ष गुणन के लिए समरूपी है।
  • मापांकों का परिमित प्रत्यक्ष योग एक द्विगुणन है: यदि
    विहित प्रक्षेपण प्रतिचित्रिण और हैं
    फिर, समावेशन प्रतिचित्रिण हैं,
    A1 ⊕ ⋯ ⊕ An, और की पहचान रूपवाद के बराबर है।
    l = k स्थिति में Ak की पहचान रूपवाद है, और अन्यथा शून्य मानचित्र है।

आंतरिक प्रत्यक्ष योग

मान लीजिए M कुछ R-मापांक है और Mi, I में प्रत्येक i के लिए M का एक उप-मापांक है। यदि M में प्रत्येक x को Mi के सीमित कई तत्वों के योग के रूप में एक और केवल एक ही तरीके से लिखा जा सकता है, तो हम कहते हैं कि M उप-मापांक Mi (हेल्मोस 1974, §18) का आंतरिक प्रत्यक्ष योग है। इस स्थिति में, जैसा कि ऊपर परिभाषित किया गया है, M स्वाभाविक रूप से Mi के (बाहरी) प्रत्यक्ष योग के समरूपी है (एडम्सन 1972, पृष्ठ 61)।

M का एक उप-मापांक N, M का 'प्रत्यक्ष योग' है यदि M का कोई अन्य उप-मापांक N' उपस्थित है जैसे कि M, N और N' का आंतरिक प्रत्यक्ष योग है। इस स्थिति में, N और N′ 'पूरक उप-मापांक' हैं।

सार्वभौमिक गुणधर्म

श्रेणी सिद्धांत की भाषा में, प्रत्यक्ष योग एक सह-उत्पाद है और इसलिए बाएं R-मापांकों की श्रेणी में एक सह-सीमा है, जिसका अर्थ है कि यह निम्नलिखित सार्वभौमिक गुणधर्मों की विशेषता है। I में प्रत्येक i के लिए, प्राकृतिक अंतःस्थापन पर विचार करेंː

जो Mi के तत्वों को उन फलनों में भेजता है जो i को छोड़कर सभी तर्कों के लिए शून्य हैं। अब मान लीजिए कि M एक यादृच्छिक R-मापांक है और fi : Mi → M प्रत्येक i के लिए यादृच्छिक R-रेखीय मानचित्र है, तो वास्तव में एक R-रेखीय मानचित्र उपस्थित है।

इस प्रकार कि f o ji = fi सभी i है।

ग्रोथेंडिक समूह

प्रत्यक्ष योग वस्तुओं के संग्रह को एक क्रमविनिमेय एकाभ की संरचना देता है, जिसमें वस्तुओं का जोड़ परिभाषित होता है, परन्तु घटाव नहीं। वास्तव में, घटाव को परिभाषित किया जा सकता है और प्रत्येक क्रमविनिमेय एकाभ को अबेलियन समूह तक बढ़ाया जा सकता है। इस विस्तार को ग्रोथेंडिक समूह के नाम से जाना जाता है। विस्तार वस्तुओं के युग्मों के समतुल्य वर्गों को परिभाषित करके किया जाता है, जो कुछ युग्मों को व्युत्क्रम के रूप में मानने की अनुमति देता है। ग्रोथेंडिक समूह पर लेख में विस्तृत निर्माण, सार्वभौमिक है, इसमें अद्वितीय होने के सार्वभौमिक गुणधर्म है और अबेलियन समूहों में एक विनिमेय एकाभ के किसी भी अन्य अंतःस्थापन के लिए समरूप है।

अतिरिक्त संरचना के साथ मापांकों का प्रत्यक्ष योग

यदि जिन मापांकों पर हम विचार कर रहे हैं उनमें कुछ अतिरिक्त संरचना (उदाहरण के लिए, एक मानक या एक आंतरिक आंतरिक गुणन) सम्मिलित है, तो मापांकों का प्रत्यक्ष योग प्रायः इस अतिरिक्त संरचना को ले जाने के लिए भी बनाया जा सकता है। इस स्थिति में, हम अतिरिक्त संरचना वाले सभी वस्तुओं के उपयुक्त श्रेणी में सह-उत्पाद प्राप्त करते हैं। बानाख समष्टि और हिल्बर्ट समष्टि के दो प्रमुख उदाहरण मिलते हैं।

कुछ शास्त्रीय ग्रंथों में, किसी क्षेत्र पर बीजगणित का प्रत्यक्ष योग वाक्यांश भी बीजगणितीय संरचना को दर्शाने के लिए प्रस्तुत किया गया है जिसे वर्तमान में सामान्यतः बीजगणित का प्रत्यक्ष गुणन कहा जाता है; अर्थात्, घटकवार संचालन के साथ अंतर्निहित समुच्चय का कार्तीय गुणन हैं। हालाँकि, यह निर्माण बीजगणित की श्रेणी में एक सह-उत्पाद प्रदान नहीं करता है, बल्कि एक प्रत्यक्ष गुणन प्रदान करता है (नीचे टिप्पणी देखें और वलयों के प्रत्यक्ष योग पर टिप्पणी देखें)।

बीजगणित का प्रत्यक्ष योग

बीजगणित का प्रत्यक्ष योग और गुणन के साथ सदिश समष्टियों के रूप में प्रत्यक्ष योग हैː

इन शास्त्रीय उदाहरणों पर विचार करें:

विभाजित-जटिल संख्याओं के लिए वलय समरूपता है, जिसका उपयोग अंतराल विश्लेषण में भी किया जाता है।
1848 में जेम्स कॉकल द्वारा प्रस्तुत टेसरीन का बीजगणित है।
जिसे विभाजित-द्विभाजन कहा जाता है, 1873 में विलियम किंग्डन क्लिफोर्ड द्वारा प्रस्तुत किया गया था।

जोसेफ वेडरबर्न ने अतिमिश्र संख्याओं के अपने वर्गीकरण में बीजगणित के प्रत्यक्ष योग की अवधारणा का उपयोग किया। उनके लेक्चर्स ऑन मैट्रिसेस (1934), पृष्ठ 151 देखें। वेडरबर्न प्रत्यक्ष योग और बीजगणित के प्रत्यक्ष गुणन के मध्य अंतर को स्पष्ट करता है: प्रत्यक्ष योग के लिए अदिश का क्षेत्र दोनों भागों: पर संयुक्त रूप से कार्य करता है जबकि प्रत्यक्ष गुणन के लिए एक अदिश कारक को भागों के साथ वैकल्पिक रूप से एकत्र किया जा सकता है, परन्तु दोनों: को नहीं। क्लिफ़ोर्ड बीजगणित और शास्त्रीय समूहों (1995) के अपने विश्लेषण में अदिश वलयों के रूप में, इयान आर. पोर्टियस उपरोक्त तीन प्रत्यक्ष योगों, को दर्शाते हुए उनका उपयोग करते हैं।

ऊपर वर्णित निर्माण, साथ ही वेडरबर्न द्वारा प्रत्यक्ष योग और प्रत्यक्ष गुणन शब्दों का उपयोग श्रेणी सिद्धांत की तुलना में एक भिन्न परंपरा का पालन करता है। श्रेणीबद्ध शब्दों में, वेडरबर्न का प्रत्यक्ष योग एक श्रेणीबद्ध गुणनफल है, जबकि वेडरबर्न का प्रत्यक्ष गुणनफल एक सह-गुणनफल (या श्रेणीबद्ध योग) है, जो (क्रमविनिमेय बीजगणित के लिए) वास्तव में बीजगणित के प्रदिश गुणन से मेल खाता है।

बानाख समष्टि का प्रत्यक्ष योग

दो बानाख समष्टियों और का प्रत्यक्ष योग है और सभी और के लिए, और मानकों के साथ सदिश समष्टि के रूप में माना जाता है।

सामान्यतः, यदि बानाख समष्टियों का एक संग्रह है, जहां सूचकांक समुच्चय का पता लगाता है तब प्रत्यक्ष योग एक मापांक है जिसमें सभी के लिए और पर, जैसे कि , सभी फलनों को पर परिभाषित किया गया है।


मानदंड उपरोक्त योग द्वारा दिया गया है। इस मानदंड के साथ प्रत्यक्ष योग पुनः एक बानाख समष्टि है।

उदाहरण के लिए, यदि हम सूचकांक समुच्चय और लेते हैं तब प्रत्यक्ष योग समष्टि है, जिसमें सभी अनुक्रम और वास्तविक मानदंडों के साथ सम्मिलित हैं।

एक संवृत्त उपसमष्टि एक बानाख समष्टि का , यदि कोई अन्य संवृत्त उप-समष्टि है तो पूरक उप-समष्टि का है जैसे कि आंतरिक प्रत्यक्ष योग के बराबर है। ध्यान दें कि प्रत्येक संवृत्त उपसमष्टि पूरक नहीं है; जैसे में पूरक नहीं है।



द्विरेखीय रूपों के साथ मापांकों का प्रत्यक्ष योग

मान लीजिए कि द्वारा अनुक्रमित एक अनुक्रमित वर्ग है। का मापांक द्विरेखीय रूपों से सुसज्जित है। द्वारा परिभाषित लंबकोणीय प्रत्यक्ष योग द्विरेखीय रूपों के साथ मापांक प्रत्यक्ष योग है।[1]

जिसमें अनंत सूचकांक समुच्चयों के लिए भी योग समझ में आता है, क्योंकि केवल सीमित रूप से बहुत से पद गैर-शून्य हैं।

हिल्बर्ट समष्टि का प्रत्यक्ष योग

यदि बहुत सारे हिल्बर्ट समष्टि दिए गए हैं, कोई उनके लंबकोणीय प्रत्यक्ष योग को उपरोक्त के रूप में बना सकता है (क्योंकि वे सदिश समष्टि हैं), आंतरिक गुणनफल को इस प्रकार परिभाषित करते हैं:

परिणामी प्रत्यक्ष योग एक हिल्बर्ट समष्टि है जिसमें दिए गए हिल्बर्ट समष्टि को पारस्परिक रूप से लंबकोणीय उप-समष्टियों के रूप में सम्मिलित किया गया है।

यदि अपरिमित रूप से अनेक हिल्बर्ट समष्टि के लिए दिए गए हैं, हम वही निर्माण कार्य कर सकते हैं; ध्यान दें कि आंतरिक गुणनफल को परिभाषित करते समय, केवल सीमित रूप से कई सारांश गैर-शून्य होंगे। हालाँकि, परिणाम केवल एक आंतरिक गुणन समष्टि होगा और यह आवश्यक रूप से बानाख समष्टि नहीं होगा। फिर हम इस आंतरिक गुणन समष्टि को पूर्ण करने के लिए, हिल्बर्ट समष्टि के प्रत्यक्ष योग को परिभाषित करते हैं।

वैकल्पिक रूप से और समकक्ष रूप से, कोई हिल्बर्ट समष्टि के प्रत्यक्ष योग को परिभाषित कर सकता है। कार्यक्षेत्र के साथ सभी फलनों α के समष्टि के रूप में, ऐसा है कि का एक तत्व है प्रत्येक के लिए है और:

ऐसे दो फलन α और β के आंतरिक गुणनफल को तब परिभाषित किया गया है:
यह समष्टि पूर्ण हो गयी है और हमें हिल्बर्ट समष्टि प्राप्त होती है।

उदाहरण के लिए, यदि हम सूचकांक समुच्चय और लेते हैं फिर प्रत्यक्ष योग समष्टि है जिसमें सभी अनुक्रम और वास्तविक मानदंडों के साथ सम्मिलित हैं। इसकी तुलना बानाख समष्टि के उदाहरण से करने पर, हम देखते हैं कि बानाख समष्टि प्रत्यक्ष योग और हिल्बर्ट समष्टि प्रत्यक्ष योग आवश्यक रूप से समान नहीं हैं। परन्तु यदि केवल सीमित रूप से कई सारांश हैं, तो बानाख समष्टि प्रत्यक्ष योग हिल्बर्ट समष्टि प्रत्यक्ष योग के समरूपी है, हालांकि मानक भिन्न होगा।

प्रत्येक हिल्बर्ट समष्टि आधार क्षेत्र की पर्याप्त रूप से कई प्रतियों के प्रत्यक्ष योग के बराबर है, जो कि या तो है। यह इस अभिकथन के समतुल्य है कि प्रत्येक हिल्बर्ट समष्टि का एक लंबात्मक आधार होता है। अधिक सामान्यतः, हिल्बर्ट समष्टि का प्रत्येक संवृत्त उप-समष्टि पूरक उप-समष्टि है क्योंकि यह एक लंबकोणीय पूरक को स्वीकार करता है। इसके विपरीत, लिंडेनस्ट्रॉस-तज़ाफरीरी प्रमेय का अभिकथन है कि यदि बानाख समष्टि के प्रत्येक संवृत्त उप-समष्टि को पूरक किया जाता है, तो बानाख समष्टि हिल्बर्ट समष्टि के लिए समरूपी है।

यह भी देखें

संदर्भ

  1. Milnor, J.; Husemoller, D. (1973). सममित द्विरेखीय रूप. Ergebnisse der Mathematik und ihrer Grenzgebiete. Vol. 73. Springer-Verlag. pp. 4–5. ISBN 3-540-06009-X. Zbl 0292.10016.