अमूर्त अवकल ज्यामिति

From Vigyanwiki
Revision as of 21:58, 10 July 2023 by alpha>S Diwedi

विशेषण सार को पहले प्रायः विभेदक ज्यामिति पर लागू किया गया है, लेकिन इस लेख का 'अमूर्त विभेदक ज्यामिति (एडीजी)' चिकनाई की गणना धारणा के बिना विभेदक ज्यामिति का एक रूप है, जिसे 1998 के बाद से अनास्तासियोस मल्लियोस और जॉन रैप्टिस द्वारा विकसित किया गया है।[1] कैलकुलस के बजाय, मनमाने टोपोलॉजिकल स्पेस के आधार पर फाइबर बंडल के स्थान पर यूक्लिडियन सदिश शीफ सिद्धांत का उपयोग करके शीफ सिद्धांत और शीफ़ कोहोमोलोजी के माध्यम से अंतर ज्यामिति का एक स्वयंसिद्ध उपचार बनाया गया है।[2] मैलियोस का कहना है किगैर-अनुवांशिक ज्यामिति को एडीजी का एक विशेष स्थिति माना जा सकता है, और एडीजीसिंथेटिक विभेदक ज्यामिति के समान है।

अनुप्रयोग

एडीजी गुरुत्वाकर्षण

मल्लिओस और राप्टिस सामान्य सापेक्षता में विलक्षणताओं से बचने के लिए एडीजी का उपयोग करते हैं और इसे क्वांटम गुरुत्वाकर्षण के मार्ग के रूप में प्रस्तावित करते हैं।[3]

यह भी देखें

संदर्भ

  1. "Geometry of Vector Sheaves: An Axiomatic Approach to Differential Geometry", Anastasios Mallios, Springer, 1998, ISBN 978-0-7923-5005-7
  2. "Modern Differential Geometry in Gauge Theories: Maxwell fields", Anastasios Mallios, Springer, 2005, ISBN 978-0-8176-4378-2
  3. Mallios, Anastasios; Raptis, Ioannis (2004). "Smooth Singularities Exposed: Chimeras of the Differential Spacetime Manifold". arXiv:gr-qc/0411121.

अग्रिम पठन