अंतर्विरोध समरूपता
टोपोलॉजी में, गणित की एक शाखा, इंटरसेक्शन होमोलॉजी एकवचन होमोलॉजी का एक एनालॉग है जो विशेष रूप से सिंगुलैरिटी सिद्धांत के अध्ययन के लिए उपयुक्त है, जिसे 1974 के पतन में मार्क गोरेस्की और रॉबर्ट मैकफर्सन (गणितज्ञ) द्वारा खोजा गया था और अगले कुछ वर्षों में उनके द्वारा विकसित किया गया था। साल।
कज़दान-लुस्ज़टिग अनुमान और रीमैन-हिल्बर्ट पत्राचार को साबित करने के लिए इंटरसेक्शन कोहोमोलॉजी का उपयोग किया गया था। इसका L2 कोहोमोलॉजी से गहरा संबंध है|L2सहसंरचना.
गोरेस्की-मैकफ़र्सन दृष्टिकोण
सघन स्थान , उन्मुखता , जुड़ा हुआ स्थान , एन-डायमेंशनल कई गुना एक्स के होमोलॉजी समूहों में एक मौलिक संपत्ति होती है जिसे पोंकारे द्वैत कहा जाता है: एक द्विरेखीय रूप होता है
शास्त्रीय रूप से - उदाहरण के लिए, हेनरी पोंकारे की ओर वापस जाएं - इस द्वंद्व को प्रतिच्छेदन सिद्धांत के संदर्भ में समझा गया था। का एक तत्व
एक जे-आयामी चक्र द्वारा दर्शाया गया है। यदि एक आई-डायमेंशनल और एक -आयामी चक्र सामान्य स्थिति में हैं, तो उनका प्रतिच्छेदन बिंदुओं का एक सीमित संग्रह है। एक्स के अभिविन्यास का उपयोग करके इनमें से प्रत्येक बिंदु पर एक चिन्ह निर्दिष्ट किया जा सकता है; दूसरे शब्दों में प्रतिच्छेदन एक 0-आयामी चक्र उत्पन्न करता है। कोई यह साबित कर सकता है कि इस चक्र का समरूपता वर्ग केवल मूल i- और के समरूपता वर्गों पर निर्भर करता है -आयामी चक्र; कोई यह भी साबित कर सकता है कि यह जोड़ी एकदम सही जोड़ी है।
जब —ये विचार टूट जाते हैं। उदाहरण के लिए, चक्रों के लिए सामान्य स्थिति की धारणा को समझना अब संभव नहीं है। गोरेस्की और मैकफर्सन ने स्वीकार्य चक्रों का एक वर्ग पेश किया जिसके लिए सामान्य स्थिति समझ में आती है। उन्होंने स्वीकार्य चक्रों के लिए एक तुल्यता संबंध पेश किया (जहां केवल स्वीकार्य सीमाएं शून्य के बराबर हैं), और समूह कहा जाता है
i-आयामी स्वीकार्य चक्र मॉड्यूलो के इस तुल्यता संबंध प्रतिच्छेदन समरूपता। उन्होंने इसके अलावा दिखाया कि एक i- और एक का प्रतिच्छेदन -आयामी स्वीकार्य चक्र एक (सामान्य) शून्य-चक्र देता है जिसका समरूपता वर्ग अच्छी तरह से परिभाषित है।
स्तरीकरण
इंटरसेक्शन होमोलॉजी को मूल रूप से टोपोलॉजिकल रूप से स्तरीकृत स्थान के साथ उपयुक्त स्थानों पर परिभाषित किया गया था, हालांकि समूह अक्सर स्तरीकरण की पसंद से स्वतंत्र होते हैं। स्तरीकृत स्थानों की कई अलग-अलग परिभाषाएँ हैं। इंटरसेक्शन होमोलॉजी के लिए एक सुविधाजनक एक एन-डायमेंशनल 'टोपोलॉजिकल स्यूडोमैनिफोल्ड' है। यह एक (पैराकॉम्पैक्ट स्पेस, हॉसडॉर्फ़ स्थान) स्पेस एक्स है जिसमें निस्पंदन है
बंद उप-स्थानों द्वारा X का इस प्रकार:
- प्रत्येक i के लिए और प्रत्येक बिंदु x के लिए , वहाँ एक पड़ोस मौजूद है एक्स में एक्स का, एक कॉम्पैक्ट -आयामी स्तरीकृत स्थान एल, और एक निस्पंदन-संरक्षण होमियोमोर्फिज्म . यहाँ L पर खुला शंकु है।
- .
- X में सघन है.
यदि X एक टोपोलॉजिकल स्यूडोमेनिफोल्ड है, तो X का i-आयामी 'स्ट्रेटम' स्थान है .
उदाहरण:
- यदि
- यदि
विकृतियाँ
प्रतिच्छेदन समरूपता समूह विकृति की पसंद पर निर्भर रहें , जो मापता है कि चक्रों को ट्रांसवर्सेलिटी से कितनी दूर तक विचलित होने की अनुमति है। (विकृति नाम की उत्पत्ति किसके द्वारा बताई गई थी Goresky (2010).) एक विकृति एक फ़ंक्शन है
पूर्णांकों से ऐसे पूर्णांकों के लिए
- .
- .
दूसरी स्थिति का उपयोग स्तरीकरण के परिवर्तन के तहत प्रतिच्छेदन समरूपता समूहों की अपरिवर्तनीयता को दिखाने के लिए किया जाता है।
पूरक विकृति का के साथ एक है
- .
पूरक आयाम और पूरक विकृति के प्रतिच्छेदन समरूपता समूह दोहरे युग्मित हैं।
विकृतियों के उदाहरण
- न्यूनतम विकृति है . इसका पूरक अधिकतम विकृति है .
- (निचली) मध्य विकृति एम द्वारा परिभाषित की गई है , फर्श और छत के कार्य . इसका पूरक ऊपरी मध्य विकृति है, मूल्यों के साथ . यदि विकृति निर्दिष्ट नहीं है, तो आमतौर पर इसका मतलब निम्न मध्य विकृति है। यदि किसी स्थान को सम आयाम के सभी स्तरों (उदाहरण के लिए, किसी भी जटिल विविधता) के साथ स्तरीकृत किया जा सकता है, तो प्रतिच्छेदन समरूपता समूह विषम पूर्णांकों पर विकृति के मूल्यों से स्वतंत्र होते हैं, इसलिए ऊपरी और निचले मध्य विकृतियाँ समतुल्य होती हैं।
एकवचन प्रतिच्छेदन समरूपता
कुछ स्तरीकरण और एक विकृति पी के साथ आयाम एन के एक टोपोलॉजिकल स्यूडोमैनिफोल्ड एक्स को ठीक करें।
मानक सिम्प्लेक्स|आई-सिंप्लेक्स से एक नक्शा σ यदि एक्स (एकवचन सिम्पलेक्स) को 'स्वीकार्य' कहा जाता है
में निहित है का कंकाल .
द कॉम्प्लेक्स एक्स पर एकवचन श्रृंखलाओं के परिसर का एक उप-संकुल है जिसमें सभी एकवचन श्रृंखलाएं शामिल हैं जैसे कि श्रृंखला और इसकी सीमा दोनों स्वीकार्य एकवचन सिंप्लेक्स के रैखिक संयोजन हैं। एकवचन प्रतिच्छेदन समरूपता समूह (विकृतता पी के साथ)
इस परिसर के समरूपता समूह हैं।
यदि एक्स में स्तरीकरण के साथ संगत त्रिकोण है, तो सरल प्रतिच्छेदन समरूपता समूहों को एक समान तरीके से परिभाषित किया जा सकता है, और स्वाभाविक रूप से एकवचन प्रतिच्छेदन समरूपता समूहों के लिए आइसोमोर्फिक हैं।
प्रतिच्छेदन गृहविज्ञान समूह एक्स के स्तरीकरण की पसंद से स्वतंत्र हैं।
यदि एक्स एक टोपोलॉजिकल मैनिफोल्ड है, तो इंटरसेक्शन होमोलॉजी समूह (किसी भी विकृति के लिए) सामान्य होमोलॉजी समूहों के समान हैं।
छोटे संकल्प
विलक्षणताओं का एक संकल्प
एक जटिल किस्म के Y को 'छोटा रिज़ॉल्यूशन' कहा जाता है यदि प्रत्येक r > 0 के लिए, Y के बिंदुओं का स्थान जहां फाइबर का आयाम r है, कोड आयाम 2r से अधिक है। मोटे तौर पर कहें तो इसका मतलब है कि अधिकांश फाइबर छोटे होते हैं। इस मामले में रूपवाद एक्स के (प्रतिच्छेदन) समरूपता से वाई के प्रतिच्छेदन समरूपता (मध्यम विकृति के साथ) तक एक समरूपता को प्रेरित करता है।
दो अलग-अलग छोटे रिज़ॉल्यूशन वाली एक किस्म होती है, जिनकी सह-समरूपता पर अलग-अलग रिंग संरचनाएं होती हैं, जिससे पता चलता है कि आमतौर पर प्रतिच्छेदन (सह) समरूपता पर कोई प्राकृतिक रिंग संरचना नहीं होती है।
शीफ़ सिद्धांत
इंटरसेक्शन कोहोमोलॉजी के लिए डेलिग्ने का सूत्र बताता है कि
कहाँ इंटरसेक्शन कॉम्प्लेक्स है, एक्स पर निर्माण योग्य शीफ का एक निश्चित कॉम्प्लेक्स (व्युत्पन्न श्रेणी के एक तत्व के रूप में माना जाता है, इसलिए दाईं ओर कोहोलॉजी का मतलब कॉम्प्लेक्स की हाइपरकोहोमोलॉजी है)। द कॉम्प्लेक्स खुले सेट पर स्थिर शीफ से शुरू करके दिया जाता है और बार-बार इसे बड़े खुले सेटों तक विस्तारित किया जा रहा है और फिर इसे व्युत्पन्न श्रेणी में छोटा करना; अधिक सटीक रूप से यह डेलिग्ने के सूत्र द्वारा दिया गया है
कहाँ व्युत्पन्न श्रेणी में एक ट्रंकेशन फ़ैक्टर है, का समावेश है में , और निरंतर शीफ़ चालू है .[1] स्थिर शीफ़ को चालू करके एक स्थानीय प्रणाली के साथ, कोई स्थानीय प्रणाली में गुणांकों के साथ प्रतिच्छेदन सहसंगति को परिभाषित करने के लिए डेलिग्ने के सूत्र का उपयोग कर सकता है।
उदाहरण
एक चिकना अण्डाकार वक्र दिया गया है एक घन सजातीय बहुपद द्वारा परिभाषित ,[2] जैसे कि , एफ़िन शंकु तब से मूल में एक पृथक विलक्षणता है और सभी आंशिक व्युत्पन्न गायब होना। ऐसा इसलिए है क्योंकि यह डिग्री में सजातीय है , और व्युत्पन्न डिग्री 2 के सजातीय हैं। सेटिंग और समावेशन मानचित्र, चौराहा परिसर के रूप में दिया गया है
संकुल आईसी(एक्स) के गुण
जटिल आई.सीp(एक्स) में निम्नलिखित गुण हैं
- संहिता 2 के कुछ बंद सेट के पूरक पर, हमारे पास है
- i + m ≠ 0 के लिए 0 है, और i = −m के लिए समूह स्थिर स्थानीय प्रणाली 'C' बनाते हैं
- i + m < 0 के लिए 0 है
- यदि मैं > 0 तो p(a) ≥ m − i के साथ सबसे छोटे a के लिए कम से कम कोड आयाम के एक सेट को छोड़कर शून्य है
- यदि मैं > 0 तो q(a) ≥(i) के साथ सबसे छोटे a के लिए कम से कम a कोड आयाम के सेट को छोड़कर शून्य है
हमेशा की तरह, q, p की पूरक विकृति है। इसके अलावा, व्युत्पन्न श्रेणी में समरूपता तक, इन स्थितियों द्वारा जटिल को विशिष्ट रूप से चित्रित किया जाता है। स्थितियाँ स्तरीकरण की पसंद पर निर्भर नहीं होती हैं, इसलिए इससे पता चलता है कि प्रतिच्छेदन सहसंबद्धता स्तरीकरण की पसंद पर भी निर्भर नहीं होती है।
वर्डियर द्वंद्व आईसी लेता हैp आईसी कोq व्युत्पन्न श्रेणी में n=dim(X) द्वारा स्थानांतरित किया गया।
यह भी देखें
- अपघटन प्रमेय
- बोरेल-मूर होमोलॉजी
- स्थलाकृतिक रूप से स्तरीकृत स्थान
- प्रतिच्छेदन सिद्धांत
- विकृत पुलिंदा
- मिश्रित हॉज संरचना
संदर्भ
- ↑ Warning: there is more than one convention for the way that the perversity enters Deligne's construction: the numbers are sometimes written as .
- ↑ हॉज सिद्धांत (PDF). E. Cattani, Fouad El Zein, Phillip Griffiths, Dũng Tráng Lê., eds. Princeton. 21 July 2014. ISBN 978-0-691-16134-1. OCLC 861677360. Archived from the original on 15 Aug 2020.
{{cite book}}
: CS1 maint: location missing publisher (link) CS1 maint: others (link), pp. 281-282
- Armand Borel, Intersection Cohomology. Progress in Mathematics, Birkhauser Boston ISBN 0-8176-3274-3
- Mark Goresky and Robert MacPherson, La dualité de Poincaré pour les espaces singuliers. C.R. Acad. Sci. t. 284 (1977), pp. 1549–1551 Serie A .
- Goresky, Mark (2010), What is the etymology of the term "perverse sheaf"?
- Goresky, Mark; MacPherson, Robert, Intersection homology theory, Topology 19 (1980), no. 2, 135–162. doi:10.1016/0040-9383(80)90003-8
- Goresky, Mark; MacPherson, Robert, Intersection homology. II, Inventiones Mathematicae 72 (1983), no. 1, 77–129. 10.1007/BF01389130 MR0696691 This gives a sheaf-theoretic approach to intersection cohomology.
- Frances Kirwan, Jonathan Woolf, An Introduction to Intersection Homology Theory ISBN 1-58488-184-4
- Kleiman, Steven. The development of intersection homology theory. A Century of Mathematics in America, Part II, Hist. Math. 2, Amer. Math. Soc., 1989, pp. 543–585.
- "Intersection homology", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
बाहरी संबंध
- What is the etymology of the term "perverse sheaf"? (includes discussion on the etymology of the term "intersection homology") – MathOverflow