स्पाइकर वृत्त

From Vigyanwiki
Revision as of 13:09, 13 July 2023 by alpha>Indicwiki (Created page with "{{short description|Inscribed circle of a triangle's medial triangle}} File:Spieker circle.svg|thumb|upright=1.35| {{legend-line|solid green|Triangle {{math|△''ABC''}} and...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
  Triangle ABC and its medial triangle
  Spieker circle of ABC (incircle of the medial triangle; centered at the Spieker center X10)
  Cleavers of the triangle (concurrent at the Spieker center)

ज्यामिति में, किसी त्रिभुज के मध्य त्रिभुज का अंतःवृत्त स्पाइकर वृत्त होता है, जिसका नाम 19वीं सदी के जर्मन जियोमीटर थियोडोर स्पीकर के नाम पर रखा गया है।[1]इसका केंद्र, स्पाइकर केंद्र, मध्य त्रिभुज का अंतःकेंद्र होने के अलावा, त्रिभुज की एकसमान-घनत्व सीमा के द्रव्यमान का केंद्र है।[1]स्पाइकर केंद्र वह बिंदु भी है जहां त्रिभुज के सभी तीन क्लीवर (ज्यामिति) (एक पक्ष के मध्य बिंदु पर एक अंत बिंदु के साथ परिधि द्विभाजक) एक दूसरे को काटते हैं।[1]


इतिहास

स्पाइकर सर्कल और स्पीकर सेंटर का नाम जर्मनी के पॉट्सडैम के गणितज्ञ और प्रोफेसर थियोडोर स्पीकर के नाम पर रखा गया है।[citation needed] 1862 में उन्होंने प्रकाशित किया Lehrbuch der ebenen geometrie mit übungsaufgaben für höhere lehranstalten, तलीय ज्यामिति से निपटना।[citation needed]अल्बर्ट आइंस्टीन सहित कई प्रसिद्ध वैज्ञानिकों और गणितज्ञों के जीवन में प्रभावशाली इस प्रकाशन के कारण, स्पाइकर गणितज्ञ बन गए जिनके लिए स्पीकर सर्कल और केंद्र का नाम रखा गया था।[1]


निर्माण

किसी त्रिभुज के स्पीकर वृत्त को खोजने के लिए, पहले मूल त्रिभुज की प्रत्येक भुजा के मध्य बिंदु से मध्य त्रिभुज का निर्माण करना होगा।[1]फिर वृत्त का निर्माण इस तरह किया जाता है कि मध्य त्रिभुज की प्रत्येक भुजा मध्य त्रिभुज के भीतर वृत्त की स्पर्शरेखा होती है, जिससे त्रिभुज का अंतःवृत्त और बाह्य वृत्त बनता है।[1]इस वृत्त केंद्र का नाम स्पीकर केंद्र है।

नागेल बिंदु और रेखाएँ

स्पाइकर सर्कल का नागेल पॉइंट से भी संबंध है। त्रिभुज का अंतःकेन्द्र और नागल बिंदु स्पीकर वृत्त के भीतर एक रेखा बनाते हैं। इस रेखाखंड का मध्य भाग स्पीकर केंद्र है।[1]नेगल रेखा त्रिभुज के अंतःकेन्द्र, नेगल बिंदु और त्रिभुज के केन्द्रक से बनती है।[1]स्पाइकर केंद्र हमेशा इसी लाइन पर स्थित रहेगा।[1]


नौ-बिंदु वृत्त और यूलर रेखा

स्पाइकर सर्कल को पहली बार जूलियन कूलिज द्वारा नौ-बिंदु सर्कल के समान पाया गया था। इस समय, इसे अभी तक स्पाइकर सर्कल के रूप में पहचाना नहीं गया था, लेकिन पूरी किताब में इसे पी सर्कल के रूप में संदर्भित किया गया है।[2] यूलर रेखा वाला नौ-बिंदु वृत्त और नागल रेखा वाला स्पीकर वृत्त एक-दूसरे के अनुरूप हैं, लेकिन द्वैत (गणित) नहीं हैं, केवल द्वैत जैसी समानताएं हैं।[1]नौ-बिंदु सर्कल और स्पीकर सर्कल के बीच एक समानता उनके निर्माण से संबंधित है। नौ-बिंदु वृत्त मध्य त्रिभुज का वृत्त वृत्त है, जबकि स्पीकर वृत्त मध्य त्रिभुज का वृत्त वृत्त है।[2]उनकी संबद्ध रेखाओं के संबंध में, नेगेल रेखा का अंतःकेंद्र यूलर रेखा के परिकेंद्र से संबंधित है।[1]एक अन्य समान बिंदु नागेल बिंदु और ऊंचाई (त्रिकोण) है, नागेल बिंदु स्पाइकर सर्कल से जुड़ा हुआ है और ऑर्थोसेंटर नौ-बिंदु सर्कल से जुड़ा हुआ है।[1]प्रत्येक वृत्त मध्य त्रिभुज की भुजाओं से मिलता है जहाँ लंबकेंद्र, या नागल बिंदु से मूल त्रिभुज के शीर्षों तक की रेखाएँ मध्य त्रिभुज की भुजाओं से मिलती हैं।[2]


स्पीकर शंकु

यूलर रेखा के साथ नौ-बिंदु वृत्त को नौ-बिंदु शंकु में सामान्यीकृत किया गया था।[1]एक समान प्रक्रिया के माध्यम से, दो मंडलों के समान गुणों के कारण, स्पाइकर सर्कल को भी स्पाइकर शंकु में सामान्यीकृत किया जा सका।[1]स्पाइकर शंकु अभी भी मध्य त्रिभुज के भीतर पाया जाता है और मध्य त्रिभुज की प्रत्येक भुजा को छूता है, हालाँकि यह त्रिभुज की उन भुजाओं को समान बिंदुओं पर नहीं मिलता है। यदि मध्य त्रिभुज के प्रत्येक शीर्ष से नेगेल बिंदु तक रेखाएं बनाई जाती हैं, तो उनमें से प्रत्येक रेखा का मध्य बिंदु पाया जा सकता है।[3] साथ ही, मध्य त्रिभुज की प्रत्येक भुजा के मध्य बिंदु पाए जाते हैं और नागल बिंदु के माध्यम से विपरीत रेखा के मध्य बिंदु से जुड़े होते हैं।[3]इनमें से प्रत्येक रेखा एक सामान्य मध्यबिंदु, S साझा करती है।[3]इनमें से प्रत्येक रेखा S के माध्यम से प्रतिबिंबित होने पर, परिणाम मध्य त्रिभुज के भीतर 6 बिंदु है। इनमें से किन्हीं 5 प्रतिबिंबित बिंदुओं के माध्यम से एक शंकु बनाएं और शंकु अंतिम बिंदु को छूएगा।[1]यह बात डिविलियर्स ने 2006 में साबित कर दी थी.[1]


स्पीकर रेडिकल सर्कल

स्पीकर पावर सेंटर (ज्यामिति) वृत्त है, जो स्पीकर केंद्र पर केंद्रित है, जो औसत दर्जे के त्रिकोण के तीन अंतःवृत्त और बाह्य वृत्तों के लिए ओर्थोगोनल है।[4][5]


संदर्भ

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 de Villiers, Michael (June 2006). "स्पीकर सर्कल और नागेल लाइन का सामान्यीकरण". Pythagoras. 63: 30–37.
  2. 2.0 2.1 2.2 Coolidge, Julian L. (1916). वृत्त और गोले पर एक ग्रंथ. Oxford University Press. pp. 53–57.
  3. 3.0 3.1 3.2 de Villiers, M. (2007). "स्पाइकर कॉनिक और नागल रेखा का सामान्यीकरण". Dynamic Mathematics Learning.
  4. Weisstein, Eric W. "एक्ससर्कल्स रेडिकल सर्कल". MathWorld- A Wolfram Web Resource.
  5. Weisstein, Eric W. "रेडिकल सर्कल". MathWorld- A Wolfram Web Resource.
  • Johnson, Roger A. (1929). Modern Geometry. Boston: Houghton Mifflin. Dover reprint, 1960.
  • Kimberling, Clark (1998). "Triangle centers and central triangles". Congressus Numerantium. 129: i–xxv, 1–295.


बाहरी संबंध