लिंक (क्नॉट सिद्धांत)

From Vigyanwiki
Revision as of 10:55, 8 July 2023 by alpha>Indicwiki (Created page with "{{short description|Collection of knots which do not intersect, but may be linked}} {{distinguish|Linking number}} Image:BorromeanRings.svg|thumb|right|[[बोरोमि...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
बोरोमियन रिंग्स, एक लिंक जिसमें तीन घटक होते हैं जिनमें से प्रत्येक अननॉट के बराबर होता है।

गणित के गाँठ सिद्धांत में, एक कड़ी गांठों (गणित) का एक संग्रह है जो प्रतिच्छेद नहीं करती हैं, लेकिन जो एक साथ जुड़ी (या गाँठ) हो सकती हैं। एक गाँठ को एक घटक के साथ एक कड़ी के रूप में वर्णित किया जा सकता है। कड़ियों और गांठों का अध्ययन गणित की एक शाखा में किया जाता है जिसे गांठ सिद्धांत कहा जाता है। इस परिभाषा में निहित यह है कि एक तुच्छ संदर्भ लिंक है, जिसे आमतौर पर अनलिंक कहा जाता है, लेकिन इस शब्द का उपयोग कभी-कभी ऐसे संदर्भ में भी किया जाता है जहां तुच्छ लिंक की कोई धारणा नहीं होती है।

एक मुड़े हुए एनुलस (गणित) द्वारा फैला हुआ एक हॉपफ लिंक।

उदाहरण के लिए, 3-आयामी अंतरिक्ष में एक संहिताकरण |सह-आयाम 2 लिंक 3-आयामी यूक्लिडियन अंतरिक्ष (या अक्सर 3-गोले) का एक उप-स्थान (टोपोलॉजी) है, जिसके जुड़े स्थान वृत्तों के होम्योमॉर्फिक हैं।

एक से अधिक घटकों वाले लिंक का सबसे सरल गैर-तुच्छ उदाहरण हॉफ लिंक कहा जाता है, जिसमें दो वृत्त (या अननॉट्स) एक साथ एक साथ जुड़े होते हैं। में घेरे बोरोमीयन वलय इस तथ्य के बावजूद सामूहिक रूप से जुड़े हुए हैं कि उनमें से कोई भी दो सीधे तौर पर जुड़े हुए नहीं हैं। इस प्रकार बोरोमियन वलय एक ब्रूनियन लिंक बनाते हैं और वास्तव में इस तरह के सबसे सरल लिंक का निर्माण करते हैं।

ट्रेफ़ोइल गाँठ एक वृत्त से जुड़ी हुई है।
हॉपफ लिंक अनलिंक के समान है।

सामान्यीकरण

एक लिंक की धारणा को कई तरीकों से सामान्यीकृत किया जा सकता है।

सामान्य अनेक गुना

अक्सर लिंक शब्द का प्रयोग गोले के किसी उपमान का वर्णन करने के लिए किया जाता है गोलाकारों की एक सीमित संख्या के असंयुक्त संघ के लिए भिन्नरूपी, .

पूर्ण व्यापकता में, लिंक शब्द अनिवार्य रूप से गाँठ शब्द के समान है - संदर्भ यह है कि किसी के पास मैनिफोल्ड एन (तुच्छ रूप से एम्बेडेड माना जाता है) का एक सबमैनिफोल्ड एम है और ए एन में एम की गैर-तुच्छ एम्बेडिंग, इस अर्थ में गैर-तुच्छ एम्बेडिंग कि दूसरी एम्बेडिंग पहले के लिए परिवेशी आइसोटोपी नहीं है। यदि एम काट दिया जाता है, तो एम्बेडिंग को एक लिंक कहा जाता है (या लिंक किया हुआ कहा जाता है)। यदि एम जुड़ा हुआ है, तो इसे गाँठ कहा जाता है।

उलझनें, डोरी की कड़ियाँ, और चोटियाँ

जबकि (1-आयामी) लिंक को हलकों के एम्बेडिंग के रूप में परिभाषित किया गया है, ब्रैड सिद्धांत के अनुसार, एम्बेडेड अंतराल (स्ट्रैंड्स) पर विचार करना अक्सर दिलचस्प और विशेष रूप से तकनीकी रूप से उपयोगी होता है।

आमतौर पर, कोई एक उलझन पर विचार कर सकता है[1][2] - उलझन एक एम्बेडिंग है

सीमा के साथ एक (चिकनी) कॉम्पैक्ट 1-मैनिफोल्ड की समतल समय अंतराल में ऐसी कि सीमा में अंतर्निहित है

().

एक उलझन का प्रकार एक निश्चित एम्बेडिंग के साथ मैनिफोल्ड एक्स है सीधे तौर पर, सीमा के साथ जुड़ा हुआ कॉम्पैक्ट 1-मैनिफोल्ड एक अंतराल है या एक वृत्त (कॉम्पैक्टनेस खुले अंतराल को बाहर कर देती है और आधा खुला अंतराल इनमें से कोई भी गैर-तुच्छ एम्बेडिंग उत्पन्न नहीं करता है क्योंकि खुले सिरे का मतलब है कि उन्हें एक बिंदु तक छोटा किया जा सकता है), इसलिए संभवतः डिस्कनेक्ट किया गया कॉम्पैक्ट 1-मैनिफोल्ड एन अंतराल का एक संग्रह है और एम वृत्त वह स्थिति जिसमें X की सीमा स्थित है

कहता है कि अंतराल या तो दो रेखाओं को जोड़ते हैं या किसी एक रेखा पर दो बिंदुओं को जोड़ते हैं, लेकिन वृत्तों पर कोई शर्त नहीं लगाते हैं। कोई व्यक्ति उलझनों को एक ऊर्ध्वाधर दिशा (I) के रूप में देख सकता है, जो दो रेखाओं के बीच स्थित है और संभवतः उन्हें जोड़ती है

( और ),

और फिर द्वि-आयामी क्षैतिज दिशा में जाने में सक्षम होना ()

इन पंक्तियों के बीच; कोई इन्हें एक गाँठ आरेख के अनुरूप, एक उलझन आरेख बनाने के लिए प्रक्षेपित कर सकता है।

टेंगल्स में लिंक (यदि X में केवल वृत्त शामिल हैं), ब्रैड्स और इसके अलावा अन्य शामिल हैं - उदाहरण के लिए, दो रेखाओं को एक साथ जोड़ने वाली एक स्ट्रैंड और उसके चारों ओर जुड़ा एक सर्कल।

इस संदर्भ में, चोटी को एक ऐसी उलझन के रूप में परिभाषित किया जाता है जो हमेशा नीचे की ओर जाती है - जिसके व्युत्पन्न में हमेशा ऊर्ध्वाधर (I) दिशा में एक गैर-शून्य घटक होता है। विशेष रूप से, इसमें केवल अंतराल शामिल होने चाहिए, न कि अपने आप में दोहराव; हालाँकि, इस पर कोई विवरण नहीं दिया गया है कि लाइन के सिरे कहाँ हैं।

एक स्ट्रिंग लिंक एक उलझन है जिसमें केवल अंतराल होते हैं, प्रत्येक स्ट्रैंड के सिरों को (0,0), (0,1), (1,0), (1,1), (2,0) पर स्थित होना आवश्यक है। 2, 1),... - यानी, पूर्णांकों को जोड़ना, और उसी क्रम में समाप्त करना जिस क्रम में वे शुरू हुए थे (कोई अन्य निश्चित बिंदुओं के सेट का उपयोग कर सकता है); यदि इसमें ℓ घटक हैं, तो हम इसे ℓ-घटक स्ट्रिंग लिंक कहते हैं। एक स्ट्रिंग लिंक को ब्रैड होने की आवश्यकता नहीं है - यह अपने आप में दोगुना हो सकता है, जैसे कि दो-घटक स्ट्रिंग लिंक जिसमें एक ओवरहैंड गाँठ होती है। एक चोटी जो एक स्ट्रिंग लिंक भी है, शुद्ध चोटी कहलाती है, और ऐसी सामान्य धारणा से मेल खाती है।

टेंगल्स और स्ट्रिंग लिंक का मुख्य तकनीकी मूल्य यह है कि उनमें बीजगणितीय संरचना होती है। टेंगल्स की आइसोटोपी कक्षाएं एक टेंसर श्रेणी बनाती हैं, जहां श्रेणी संरचना के लिए, कोई दो टेंगल्स की रचना कर सकता है यदि एक का निचला सिरा दूसरे के शीर्ष सिरे के बराबर होता है (ताकि सीमाओं को एक साथ जोड़ा जा सके), उन्हें ढेर करके - वे नहीं बनाते हैं वस्तुतः एक श्रेणी बनाते हैं (बिंदुवार) क्योंकि उनकी कोई पहचान नहीं है, क्योंकि एक छोटी सी उलझन भी ऊर्ध्वाधर स्थान लेती है, लेकिन आइसोटोपी तक वे ऐसा करते हैं। टेन्सर संरचना उलझनों के संयोजन द्वारा दी जाती है - एक उलझन को दूसरे के दाईं ओर रखना।

एक निश्चित ℓ के लिए, ℓ-घटक स्ट्रिंग लिंक की आइसोटोपी कक्षाएं एक मोनॉइड बनाती हैं (कोई सभी ℓ-घटक स्ट्रिंग लिंक बना सकता है, और एक पहचान होती है), लेकिन एक समूह नहीं, क्योंकि स्ट्रिंग लिंक की आइसोटोपी कक्षाओं में व्युत्क्रम की आवश्यकता नहीं होती है। हालाँकि, स्ट्रिंग लिंक के समवर्ती वर्गों (और इस प्रकार समरूप वर्ग) में व्युत्क्रम होता है, जहाँ स्ट्रिंग लिंक को उल्टा करके व्युत्क्रम दिया जाता है, और इस प्रकार एक समूह बनता है।

प्रत्येक लिंक को एक स्ट्रिंग लिंक बनाने के लिए अलग किया जा सकता है, हालांकि यह अद्वितीय नहीं है, और लिंक के इनवेरिएंट को कभी-कभी स्ट्रिंग लिंक के इनवेरिएंट के रूप में समझा जा सकता है - उदाहरण के लिए, मिल्नोर के इनवेरिएंट के मामले में यह है। बंद चोटियों से तुलना करें.

यह भी देखें

संदर्भ

  1. Habegger, Nathan; Lin, X.S. (1990), "The classification of links up to homotopy", Journal of the American Mathematical Society, 2, American Mathematical Society, 3 (2): 389–419, doi:10.2307/1990959, JSTOR 1990959
  2. Habegger, Nathan; Masbaum, Gregor (2000), "The Kontsevich integral and Milnor's invariants", Topology, 39 (6): 1253–1289, CiteSeerX 10.1.1.31.6675, doi:10.1016/S0040-9383(99)00041-5