फ़ुबिनी-अध्ययन मीट्रिक
गणित में, फ़ुबिनी-अध्ययन मीट्रिक प्रक्षेप्य हिल्बर्ट स्थान पर काहलर मीट्रिक है, जो कि समष्टि प्रक्षेप्य स्थान सीपीn पर है।हर्मिटियन रूप से संपन्न। इस मीट्रिक (गणित) का वर्णन मूल रूप से 1904 और 1905 में गुइडो फ़ुबिनी और एडवर्ड द्वारा अध्ययन किया गया था।[1][2]
(सदिश समिष्ट ) Cn+1 में हर्मिटियन रूप GL(n+1,C) में एकात्मक उपसमूह U(n+1) को परिभाषित करता है। फ़ुबिनी-अध्ययन मीट्रिक को ऐसी U(n+1) कार्रवाई के अधीन अपरिवर्तनीयता द्वारा समरूपता (समग्र स्केलिंग) तक निर्धारित किया जाता है; इस प्रकार यह सजातीय स्थान है। फ़ुबिनी-अध्ययन मीट्रिक से सुसज्जित, 'CPn सममित स्थान है। मीट्रिक पर विशेष सामान्यीकरण अनुप्रयोग पर निर्भर करता है। रीमैनियन ज्यामिति में, कोई सामान्यीकरण का उपयोग करता है ताकि फ़ुबिनी-अध्ययन मीट्रिक केवल एन-क्षेत्र पर मानक मीट्रिक से संबंधित हो|(2n+1)-क्षेत्र। बीजगणितीय ज्यामिति में, कोई CPn को हॉज मैनिफ़ोल्ड बनाते हुए सामान्यीकरण का उपयोग करता है।
निर्माण
इस प्रकार से फ़ुबिनी-अध्ययन मीट्रिक समष्टि प्रक्षेप्य स्थान के कोटिएंट स्पेस (टोपोलॉजी) निर्माण में स्वाभाविक रूप से उत्पन्न होता है।
अतः विशेष रूप से, कोई CPn को Cn+1 में सभी समष्टि रेखाओं से युक्त स्थान के रूप में परिभाषित कर सकता है, अर्थात, प्रत्येक बिंदु के सभी समष्टि गुणकों को एक साथ जोड़ने वाले तुल्यता संबंध द्वारा Cn+1\{0} का भागफल है। यह गुणक समूह C* = C \ {0} के विकर्ण समूह क्रिया (गणित) द्वारा भागफल से सहमत है:
चूंकि यह भागफल Cn+1\{0} को आधार स्थान CPn पर एक समष्टि रेखा बंडल के रूप में प्राप्त करता है। (वास्तव में यह CPn पर तथाकथित टॉटोलॉजिकल बंडल है।) इस प्रकार CPn के एक बिंदु को (n+1)-ट्यूपल्स [Z0,...,Zn] मॉड्यूलो नॉनजीरो समष्टि रीस्केलिंग के समतुल्य वर्ग के साथ पहचाना जाता है; अतः Zi को बिंदु के सजातीय निर्देशांक कहा जाता है।
इसके अतिरिक्त , कोई इस भागफल मानचित्रण को दो चरणों में प्राप्त कर सकता है: चूँकि गैर-शून्य समष्टि अदिश z = R eiθ द्वारा गुणा करना को विशिष्ट रूप से मापांक R द्वारा फैलाव की संरचना के रूप में विचार किया जा सकता है जिसके पश्चात कोण द्वारा मूल के बारे में वामावर्त प्रवणता होता है , भागफल मानचित्रण Cn+1 → CPn दो टुकड़ों में विभाजित किया जाता है।
जहां चरण (a) R ∈ R+ के लिए फैलाव Z ~ RZ द्वारा एक भागफल है, जो की धनात्मक वास्तविक संख्याओं का गुणक समूह है, और चरण (b) घूर्णन Z ~ eiθZ द्वारा एक भागफल है।
इस प्रकार से (a) में भागफल का परिणाम समीकरण |Z|2 = |Z0|2 + ... + |Zn|2 = 1 द्वारा परिभाषित वास्तविक हाइपरस्फेयर S2n+1 है। (b) में भागफल CPn = S2n+1/S1, को प्राप्त करता है, जहां S1 घूर्णन के समूह का प्रतिनिधित्व करता है। इस भागफल को स्पष्ट रूप से प्रसिद्ध हॉफ फ़िब्रेशन S1 → S2n+1 → CPn, द्वारा प्राप्त किया जाता है, जिसके तंतु उच्च वृत्तों में से हैं.
मीट्रिक भागफल के रूप में
किन्तु जब भागफल रीमैनियन मैनिफोल्ड (या सामान्य रूप से मीट्रिक स्थान) से लिया जाता है, तो यह सुनिश्चित करने के लिए ध्यान रखा जाना चाहिए कि भागफल स्थान रीमैनियन मीट्रिक से संपन्न है जो की सही प्रकार से परिभाषित है। इस प्रकार से उदाहरण के लिए, यदि कोई समूह G रीमैनियन मैनिफोल्ड (X,g) पर कार्य करता है, तो कक्षा स्थान X/G के लिए प्रेरित मीट्रिक प्राप्त करने के लिए, को G-कक्षाओं के साथ इस अर्थ में स्थिर होना चाहिए कि किसी भी गुण h ∈ G और वेक्टर फ़ील्ड की जोड़ी के लिए हमारे पास g(Xh,Yh) = g(X,Y) होना चाहिए।
'सी' पर मानक हर्मिटियन मीट्रिकn+1 द्वारा मानक आधार पर दिया गया है
जिसकी प्राप्ति R2n+2 पर मानक यूक्लिडियन मीट्रिक है. यह मीट्रिक 'C*' की विकर्ण कार्रवाई के अधीन अपरिवर्तनीय नहीं है, इसलिए हम इसे सीधे भागफल में CPn तक पहुंचाने में असमर्थ हैं. चूंकि , यह मीट्रिक S1= U(1) की विकर्ण क्रिया के अधीन अपरिवर्तनीय है, जो की घूर्णनों का समूह है। इसलिए, चरण (a) पूर्ण होने के पश्चात उपरोक्त निर्माण में चरण (b) संभव है।
इस प्रकार से फ़ुबिनी-अध्ययन मीट्रिक भागफल CPn = S2n+1/S1,पर प्रेरित मीट्रिक है जहाँ यूनिट हाइपरस्फीयर के लिए मानक यूक्लिडियन मीट्रिक के प्रतिबंध द्वारा उस पर संपन्न तथाकथित चक्रवत मीट्रिक प्रदान करता है।
स्थानीय एफ़िन निर्देशांक में
सजातीय निर्देशांक [Z0:...:Zn] के साथ CPn में एक बिंदु के अनुरूप, n निर्देशांक (z1,...,zn) का एक अनूठा समुच्चय है जैसे कि
इस प्रकार से निःसंदेह Z0 ≠ 0; विशेष रूप से, zj = Zj/Z0. (z1,...,zn) समन्वय पैच U0 = {Z0 ≠ 0} में CPn के लिए एक एफ़िन निर्देशांक समन्वय प्रणाली बनाता है। कोई भी किसी भी समन्वय पैच Ui = {Zi ≠ 0} में स्पष्ट तरीके से Zi द्वारा विभाजित करके एफ़िन समन्वय प्रणाली विकसित कर सकता है। n+1 समन्वय पैच Ui CPn को कवर करता है, और Ui पर एफ़िन निर्देशांक (z1,...,zn) के संदर्भ में मीट्रिक को स्पष्ट रूप से देना संभव है। समन्वय व्युत्पन्न सीपीएन के होलोमोर्फिक स्पर्शरेखा बंडल के एक फ्रेम को परिभाषित करते हैं, जिसके संदर्भ में फ़ुबिनी-अध्ययन मीट्रिक में हर्मिटियन घटक होते हैं
जहाँ |z|2= |z1|2 + ...+ |zn|2. अर्थात , इस फ्रेम में फ़ुबिनी-अध्ययन मेट्रिक का हर्मिटियन आव्यूह है
ध्यान दें कि प्रत्येक आव्यूह गुण एकात्मक-अपरिवर्तनीय है: विकर्ण क्रिया इस आव्यूह को अपरिवर्तित छोड़ देंगे.
इस प्रकार से तदनुसार, रेखा गुण द्वारा दिया गया है
इस अंतिम अभिव्यक्ति में, योग सम्मेलन का उपयोग लैटिन सूचकांकों i,j का योग करने के लिए किया जाता है जो 1 से n तक की सीमा में होते हैं।
मीट्रिक को निम्नलिखित काहलर क्षमता से प्राप्त किया जा सकता है:[3]
जहाँ:
सजातीय निर्देशांक का उपयोग करना
सजातीय निर्देशांक के अंकन में अभिव्यक्ति भी संभव है, जिसका उपयोग सामान्यतः बीजगणितीय ज्यामिति की प्रक्षेप्य किस्मों का वर्णन करने के उपयोग लिए किया जाता है: Z = [Z0:...:Zn]. औपचारिक रूप से, इसमें सम्मिलित अभिव्यक्तियों की उपयुक्त व्याख्या के अधीन, किसी के पास है
यहां योग सम्मेलन का उपयोग ग्रीक सूचकांकों α β को 0 से n तक के योग के लिए किया जाता है, और अंतिम समानता में टेंसर के प्रवणता भाग के लिए मानक संकेतन का उपयोग किया जाता है:
चूंकि, ds2 के लिए यह अभिव्यक्ति स्पष्ट रूप से टॉटोलॉजिकल बंडल Cn+1\{0} के कुल स्थान पर एक टेंसर को परिभाषित करती है। इसे CPn के टॉटोलॉजिकल बंडल के होलोमोर्फिक सेक्शन σ के साथ वापस पुनरुक्तात्मक CPn पर एक टेंसर के रूप में सही प्रकार से समझा जाना चाहिए। अतः यह सत्यापित करना बाकी है कि पुलबैक का मूल्य अनुभाग की विकल्प से स्वतंत्र है: यह प्रत्यक्ष गणना द्वारा किया जा सकता है।
इस प्रकार से मीट्रिक का काहलर रूप है
जहां डॉल्बॉल्ट संचालक हैं।
इसका पुलबैक स्पष्ट रूप से होलोमोर्फिक अनुभाग की विकल्प से स्वतंत्र है। मात्रा लॉग|Z|2 CPn का काहलर विभव (जिसे कभी-कभी काहलर अदिश भी कहा जाता है) है.
ब्रा-केट में निर्देशांक संकेतन
इस प्रकार से संदर्भ मात्रा में, फ़ुबिनी-अध्ययन मीट्रिक को ब्यूर्स मीट्रिक के रूप में भी जाना जाता है।[4] चूंकि , ब्यूर्स मेट्रिक को सामान्यतः मिश्रित अवस्था (भौतिकी) के अंकन में परिभाषित किया गया है, जबकि नीचे दी गई व्याख्या शुद्ध अवस्था के संदर्भ में लिखी गई है। मीट्रिक का वास्तविक भाग फिशर सूचना मीट्रिक (चार गुना) है।[4]
अतः फ़ुबिनी-अध्ययन मीट्रिक सामान्यतः संदर्भ मात्रा में उपयोग किए जाने वाले ब्रा-केट नोटेशन का उपयोग करके लिखा जा सकता है। इस अंकन को ऊपर दिए गए सजातीय निर्देशांक के साथ स्पष्ट रूप से समान करने के लिए, जहाँ:
जहाँ हिल्बर्ट स्थान के लिए ऑर्थोनॉर्मल आधार सदिश का समुच्चय है सम्मिश्र संख्याएँ हैं, और प्रक्षेप्य स्थान में बिंदु के लिए मानक संकेतन है सजातीय निर्देशांक में. फिर, दो अंक दिए और अंतरिक्ष में, उनके मध्य की दूरी (एक जियोडेसिक की लंबाई) है
या, समकक्ष, प्रक्षेप्य विविधता संकेतन में,
जहाँ , का समष्टि संयुग्म है . इस प्रकार से सभी में अनुस्मारक है कि और इसी तरह इकाई लंबाई तक सामान्यीकृत नहीं किया गया; इस प्रकार सामान्यीकरण को जहाँ स्पष्ट किया गया है। हिल्बर्ट स्पेस में, मीट्रिक को दो सदिश के मध्य के कोण के रूप में किन्तु नगण्य रूप से व्याख्या किया जा सकता है; इस प्रकार इसे कभी-कभी संदर्भ कोण भी कहा जाता है। कोण वास्तविक-मूल्यवान है, और 0 से चलता है .
इस मीट्रिक का अतिसूक्ष्म रूप शीघ्रता से प्राप्त किया जा सकता है , या समकक्ष, प्राप्त करने के लिए
अतः संदर्भ मात्रा के संदर्भ में, CP1 को बलोच क्षेत्र कहा जाता है; फ़ुबिनी-अध्ययन मीट्रिक संदर्भ मात्रा के ज्यामितिकरण के लिए प्राकृतिक मीट्रिक (गणित) है। संदर्भ विशेषक और बेरी चरण प्रभाव सहित संदर्भ मात्रा के अधिकांश अपूर्व व्यवहार को फ़ुबिनी-अध्ययन मीट्रिक की प्रमुखता के लिए उत्तरदायी ठहराया जा सकता है।
एन = 1 स्तिथि
जब n = 1 होता है, तो त्रिविम प्रक्षेपण द्वारा दी गई भिन्नता होती है। यह "विशेष" हॉपफ फ़िब्रेशन S1 → S3 → S2 की ओर ले जाता है। जब फ़ुबिनी-अध्ययन मीट्रिक को CP1 पर निर्देशांक में लिखा जाता है, तो वास्तविक स्पर्शरेखा बंडल पर इसका प्रतिबंध S2 पर त्रिज्या 1/2 (और गॉसियन वक्रता 4) के सामान्य "व्रत मीट्रिक" की अभिव्यक्ति उत्पन्न करता है।
अर्थात्, यदि z = x + iy रीमैन क्षेत्र 'सीपी' पर मानक एफ़िन समन्वय चार्ट है1 और x = r cos θ, y = r sin θ 'C' पर ध्रुवीय निर्देशांक हैं, तो नियमित गणना से पता चलता है
जहाँ इकाई 2-चक्रवते पर चक्रवत मीट्रिक है। जहाँ φ, θ S पर गणितज्ञ के चक्रवताकार निर्देशांक हैं2 स्टीरियोग्राफ़िक प्रक्षेपण r tan(φ/2) = 1, tan θ = y/x से आ रहा है। (कई भौतिकी संदर्भ φ और θ की भूमिकाओं को आपस में बदल देते हैं।)
काहलर रूप है
चार पैरों वाले के रूप में चुनना और , काहलर रूप को सरल बनाता है
हॉज सितारा को काहलर रूप में लगाने से, प्राप्त होता है
इसका तात्पर्य यह है कि K हार्मोनिक रूप है।
एन = 2 स्तिथि
समष्टि प्रक्षेप्य तल 'सीपी' पर फ़ुबिनी-अध्ययन मीट्रिक2 को गुरुत्वाकर्षण पल के रूप में प्रस्तावित किया गया है, इंस्टेंटन का गुरुत्वाकर्षण एनालॉग।[5][3] बार उपयुक्त वास्तविक 4डी निर्देशांक स्थापित हो जाने पर मीट्रिक, कनेक्शन रूप और वक्रता की गणना आसानी से की जाती है। लिखना वास्तविक कार्टेशियन निर्देशांक के लिए, कोई एन-चक्रवते|4-चक्रवते (चतुर्धातुक प्रक्षेप्य रेखा) पर ध्रुवीय निर्देशांक को एक-रूप में परिभाषित करता है
h> ली समूह पर मानक बाएँ-अपरिवर्तनीय एक-रूप समन्वय फ़्रेम हैं ; अर्थात् वे आज्ञापालन करते हैं के लिए चक्रीय.
संबंधित स्थानीय एफ़िन निर्देशांक हैं और फिर प्रदान करें
सामान्य संक्षिप्ताक्षरों के साथ और .
पहले दिए गए अभिव्यक्ति से शुरू होने वाला रेखा गुण , द्वारा दिया गया है
विएर्बिन्स को अंतिम अभिव्यक्ति से तुरंत पढ़ा जा सकता है:
अर्थात्, विएरबीन समन्वय प्रणाली में, रोमन-अक्षर सबस्क्रिप्ट का उपयोग करते हुए, मीट्रिक टेंसर यूक्लिडियन है:
वायरबीन को देखते हुए, स्पिन कनेक्शन की गणना की जा सकती है; लेवी-सिविटा स्पिन कनेक्शन अनूठा कनेक्शन है जो मरोड़ रूप है | मरोड़ मुक्त और सहसंयोजक स्थिरांक, अर्थात्, यह एक-रूप है जो मरोड़-मुक्त स्थिति को संतुष्ट करता है
और सहसंयोजक रूप से स्थिर है, जो स्पिन कनेक्शन के लिए, इसका मतलब है कि यह विएर्बिन इंडेक्स में एंटीसिमेट्रिक है:
उपरोक्त को आसानी से हल किया जा सकता है; प्राप्त होता है
रीमैन वक्रता टेंसर|वक्रता 2-रूप को इस प्रकार परिभाषित किया गया है
और स्थिर है:
वीरबीन इंडेक्स में रिक्की टेंसर द्वारा दिया गया है
जहां वक्रता 2-रूप को चार-घटक टेंसर के रूप में विस्तारित किया गया था:
परिणामी रिक्की टेंसर स्थिर है
ताकि परिणामी आइंस्टीन समीकरण
ब्रह्माण्ड संबंधी स्थिरांक से हल किया जा सकता है .
सामान्य तौर पर फ़ुबिनी-अध्ययन मेट्रिक्स के लिए वेइल टेंसर दिया जाता है
n = 2 मामले के लिए, दो-रूप
स्व-द्वैत हैं:
वक्रता गुण
n = 1 विशेष मामले में, फ़ुबिनी-अध्ययन मीट्रिक में निरंतर अनुभागीय वक्रता होती है जो समान रूप से 4 के समान होती है, 2-चक्रवते के चक्रवत मीट्रिक के साथ समतुल्यता के अनुसार (जिसमें त्रिज्या R दिया गया है, अनुभागीय वक्रता होती है) ). चूंकि , n > 1 के लिए, फ़ुबिनी-अध्ययन मीट्रिक में निरंतर वक्रता नहीं है। इसके बजाय इसकी अनुभागीय वक्रता समीकरण द्वारा दी गई है[6]
जहाँ 2-प्लेन σ, J : T'CP' का ऑर्थोनॉर्मल आधार हैn → टी'सीपी'n 'सीपी' पर रैखिक समष्टि संरचना हैn, और फ़ुबिनी-अध्ययन मीट्रिक है।
इस सूत्र का परिणाम यह है कि अनुभागीय वक्रता संतुष्ट होती है सभी 2-विमानों के लिए . अधिकतम अनुभागीय वक्रता (4) होलोमोर्फिक फ़ंक्शन 2-प्लेन पर प्राप्त की जाती है - जिसके लिए J(σ) ⊂ σ - जबकि न्यूनतम अनुभागीय वक्रता (1) 2-प्लेन पर प्राप्त की जाती है जिसके लिए J(σ) ऑर्थोगोनल है से σ. इस कारण से, फ़ुबिनी-अध्ययन मीट्रिक को अक्सर 4 के समान निरंतर होलोमोर्फिक अनुभागीय वक्रता कहा जाता है।
इससे 'सीपी' बनता हैn (गैर-सख्त) क्वार्टर-पिंच क्षेत्र प्रमेय; प्रसिद्ध प्रमेय से पता चलता है कि कड़ाई से चौथाई-चुटकी से जुड़ा हुआ एन-मैनिफोल्ड चक्रवते के लिए होमियोमोर्फिक होना चाहिए।
फ़ुबिनी-अध्ययन मीट्रिक भी आइंस्टीन मीट्रिक है जिसमें यह अपने स्वयं के रिक्की टेंसर के समानुपाती होता है: इसमें स्थिरांक मौजूद होता है ; ऐसा कि हमारे पास जो कुछ भी i,j है उसके लिए
इसका तात्पर्य, अन्य बातों के अतिरिक्त , फ़ुबिनी-अध्ययन मीट्रिक रिक्की प्रवाह के अधीन अदिश गुणक तक अपरिवर्तित रहता है। यह सीपी भी बनाता हैसामान्य सापेक्षता के सिद्धांत के लिए अपरिहार्य, जहां यह निर्वात आइंस्टीन क्षेत्र समीकरणों के लिए गैर-नगण्य समाधान के रूप में कार्य करता है।
ब्रह्माण्ड संबंधी स्थिरांक सीपी के लिएnस्थान के आयाम के संदर्भ में दिया गया है:
उत्पाद मीट्रिक
पृथक्करण की सामान्य धारणाएँ फ़ुबिनी-अध्ययन मीट्रिक के लिए लागू होती हैं। अधिक सटीक रूप से, मीट्रिक प्रक्षेप्य स्थानों के प्राकृतिक उत्पाद, सेग्रे एम्बेडिंग पर अलग किया जा सकता है। अर्थात यदि पृथक्करणीय अवस्था है, इसलिए इसे इस प्रकार लिखा जा सकता है , तो मीट्रिक उप-स्थानों पर मीट्रिक का योग है:
जहाँ और उप-स्थान ए और बी पर क्रमशः मेट्रिक्स हैं।
कनेक्शन और वक्रता
तथ्य यह है कि मीट्रिक को काहलर क्षमता से प्राप्त किया जा सकता है, इसका मतलब है कि क्रिस्टोफेल प्रतीकों और वक्रता टेंसर में बहुत सारी समरूपताएं होती हैं, और उन्हें विशेष रूप से सरल रूप दिया जा सकता है:[7] क्रिस्टोफ़ेल प्रतीक, स्थानीय एफ़िन निर्देशांक में, द्वारा दिए गए हैं
रीमैन टेंसर भी विशेष रूप से सरल है:
रिक्की टेंसर है
उच्चारण
विशेष रूप से देशी अंग्रेजी बोलने वालों द्वारा की जाने वाली सामान्य उच्चारण गलती यह मान लेना है कि अध्ययन का उच्चारण अध्ययन करने की क्रिया के समान ही किया जाता है। चूँकि यह वास्तव में जर्मन नाम है, अध्ययन में यू का उच्चारण करने का सही तरीका फ़ुबिनी में यू के समान है। इसके अतिरिक्त , अध्ययन में एस का उच्चारण फिशर में श की तरह किया जाता है। ध्वन्यात्मकता के संदर्भ में: ʃtuːdi।
यह भी देखें
- गैर-रैखिक सिग्मा मॉडल
- कलुज़ा-क्लेन सिद्धांत
- अरकेलोव ऊंचाई
संदर्भ
- ↑ G. Fubini, "Sulle metriche definite da una forme Hermitiana", (1904) Atti del Reale Istituto Veneto di Scienze, Lettere ed Arti , 63 pp. 502–513
- ↑ Study, E. (1905). "Kürzeste Wege im komplexen Gebiet". Mathematische Annalen (in Deutsch). Springer Science and Business Media LLC. 60 (3): 321–378. doi:10.1007/bf01457616. ISSN 0025-5831. S2CID 120961275.
- ↑ 3.0 3.1 Eguchi, Tohru; Gilkey, Peter B.; Hanson, Andrew J. (1980). "गुरुत्वाकर्षण, गेज सिद्धांत और विभेदक ज्यामिति". Physics Reports. Elsevier BV. 66 (6): 213–393. Bibcode:1980PhR....66..213E. doi:10.1016/0370-1573(80)90130-1. ISSN 0370-1573.
- ↑ 4.0 4.1 Paolo Facchi, Ravi Kulkarni, V. I. Man'ko, Giuseppe Marmo, E. C. G. Sudarshan, Franco Ventriglia "Classical and Quantum Fisher Information in the Geometrical Formulation of Quantum Mechanics" (2010), Physics Letters A 374 pp. 4801. doi:10.1016/j.physleta.2010.10.005
- ↑ Eguchi, Tohru; Freund, Peter G. O. (1976-11-08). "क्वांटम ग्रेविटी और वर्ल्ड टोपोलॉजी". Physical Review Letters. American Physical Society (APS). 37 (19): 1251–1254. Bibcode:1976PhRvL..37.1251E. doi:10.1103/physrevlett.37.1251. ISSN 0031-9007.
- ↑ Sakai, T. Riemannian Geometry, Translations of Mathematical Monographs No. 149 (1995), American Mathematics Society.
- ↑ Andrew J. Hanson, Ji-PingSha, "Visualizing the K3 Surface" (2006)
- Besse, Arthur L. (1987), Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Berlin, New York: Springer-Verlag, pp. xii+510, ISBN 978-3-540-15279-8
- Brody, D.C.; Hughston, L.P. (2001), "Geometric Quantum Mechanics", Journal of Geometry and Physics, 38 (1): 19–53, arXiv:quant-ph/9906086, Bibcode:2001JGP....38...19B, doi:10.1016/S0393-0440(00)00052-8, S2CID 17580350
- Griffiths, P.; Harris, J. (1994), Principles of Algebraic Geometry, Wiley Classics Library, Wiley Interscience, pp. 30–31, ISBN 0-471-05059-8
- Onishchik, A.L. (2001) [1994], "Fubini–Study metric", Encyclopedia of Mathematics, EMS Press.