समतल मैनिफोल्ड

From Vigyanwiki

गणित में, रीमैनियन मैनिफोल्ड को सपाट कहा जाता है यदि इसका रीमैन वक्रता टेंसर हर जगह शून्य है। सहज रूप से, सपाट मैनिफ़ोल्ड वह है जो स्थानीय रूप से दूरियों और कोणों के संदर्भ में यूक्लिडियन अंतरिक्ष जैसा दिखता है, उदाहरण के लिए। त्रिभुज के आंतरिक कोणों का योग 180° होता है।

संपूर्ण अंतरिक्ष फ्लैट मैनिफोल्ड का सार्वभौमिक आवरण यूक्लिडियन अंतरिक्ष है। इसका उपयोग प्रमेय को सिद्ध करने के लिए किया जा सकता है

Bieberbach (1911, 1912) कि सभी सघन स्थान  फ्लैट मैनिफोल्ड्स को टोरी द्वारा सीमित रूप से कवर किया गया है; त्रि-आयामी मामला पहले सिद्ध किया गया था Schoenflies (1891).

उदाहरण

निम्नलिखित मैनिफोल्ड्स को फ्लैट मीट्रिक के साथ संपन्न किया जा सकता है। ध्यान दें कि यह उनका 'मानक' मीट्रिक नहीं हो सकता है (उदाहरण के लिए, 2-आयामी टोरस पर फ्लैट मीट्रिक इसके सामान्य एम्बेडिंग से प्रेरित मीट्रिक नहीं है ).

आयाम 1

प्रत्येक एक-आयामी रीमैनियन मैनिफोल्ड सपाट है। इसके विपरीत, यह देखते हुए कि प्रत्येक जुड़ा हुआ एक-आयामी स्मूथ मैनिफोल्ड किसी से भिन्न होता है या यह देखना सीधा है कि प्रत्येक जुड़ा हुआ एक-आयामी रीमानियन मैनिफोल्ड निम्नलिखित में से किसी के लिए सममितीय है (प्रत्येक अपनी मानक रीमानियन संरचना के साथ):

  • असली लाइन
  • खुला अंतराल कुछ संख्या के लिए
  • खुला अंतराल
  • वृत्त त्रिज्या का कुछ संख्या के लिए

केवल प्रथम और अंतिम ही पूर्ण हैं। यदि किसी में रीमैनियन मैनिफोल्ड्स-विथ-बाउंड्री शामिल है, तो आधे-खुले और बंद अंतरालों को भी शामिल किया जाना चाहिए।

इस मामले में पूर्ण विवरण की सरलता इस तथ्य पर आधारित हो सकती है कि प्रत्येक एक-आयामी रीमैनियन मैनिफोल्ड में चिकनी इकाई-लंबाई वेक्टर क्षेत्र होता है, और उपरोक्त मॉडल उदाहरणों में से से आइसोमेट्री अभिन्न वक्र पर विचार करके प्रदान की जाती है।

आयाम 2

पाँच संभावनाएँ, भिन्नरूपता तक

अगर तो, सहज द्वि-आयामी जुड़ा हुआ पूर्ण फ्लैट रीमानियन मैनिफोल्ड है से भिन्न होना चाहिए मोबियस पट्टी, या क्लेन बोतल। ध्यान दें कि केवल कॉम्पैक्ट संभावनाएँ हैं और क्लेन बोतल, जबकि एकमात्र उन्मुख संभावनाएँ हैं और इन स्थानों पर विशिष्ट पूर्ण फ्लैट रीमानियन मेट्रिक्स का वर्णन करने के लिए अधिक प्रयास करना पड़ता है। उदाहरण के लिए, के दो कारक उनकी त्रिज्याएँ कोई भी दो वास्तविक संख्याएँ हो सकती हैं। ये मेट्रिक्स उनकी दो त्रिज्याओं के अनुपात से दूसरे से भिन्न होते हैं, इसलिए इस स्थान में असीमित रूप से कई अलग-अलग फ्लैट उत्पाद मेट्रिक्स होते हैं जो स्केल फैक्टर तक आइसोमेट्रिक नहीं होते हैं। पांच संभावनाओं के बारे में समान रूप से बात करने के लिए, और विशेष रूप से मोबियस स्ट्रिप और क्लेन बोतल के साथ अमूर्त मैनिफोल्ड के रूप में ठोस रूप से काम करने के लिए, समूह क्रियाओं की भाषा का उपयोग करना उपयोगी है।

पांच संभावनाएं, आइसोमेट्री तक

दिया गया होने देना अनुवाद को निरूपित करें द्वारा दिए गए होने देना प्रतिबिंब को निरूपित करें द्वारा दिए गए दो सकारात्मक संख्याएँ दी गई हैं के निम्नलिखित उपसमूहों पर विचार करें के आइसोमेट्री का समूह अपने मानक मीट्रिक के साथ।

  • बशर्ते

ये सभी समूह स्वतंत्र रूप से और उचित रूप से असंतत रूप से कार्य कर रहे हैं और इसलिए विभिन्न कोसेट स्थान सभी में स्वाभाविक रूप से द्वि-आयामी पूर्ण फ्लैट रीमैनियन मैनिफोल्ड्स की संरचना होती है। उनमें से कोई भी दूसरे के लिए आइसोमेट्रिक नहीं है, और रीमैनियन मैनिफोल्ड से जुड़ा कोई भी चिकना दो-आयामी पूर्ण फ्लैट उनमें से के लिए आइसोमेट्रिक है।

कक्षीय ्स

ऑर्बिफोल्ड्स पर लेख में सूचीबद्ध फ्लैट मीट्रिक (टोरस और क्लेन बोतल सहित) के साथ 17 कॉम्पैक्ट 2-आयामी ऑर्बिफोल्ड हैं, जो 17 वॉलपेपर समूहों के अनुरूप हैं।

टिप्पणियाँ

ध्यान दें कि डोनट के रूप में टोरस का मानक 'चित्र' इसे सपाट मीट्रिक के साथ प्रस्तुत नहीं करता है, क्योंकि केंद्र से सबसे दूर के बिंदुओं में सकारात्मक वक्रता होती है जबकि केंद्र के निकटतम बिंदुओं में नकारात्मक वक्रता होती है। कुइपर के नैश एम्बेडिंग प्रमेय के सूत्रीकरण के अनुसार, है एम्बेडिंग जो मौजूद किसी भी फ्लैट उत्पाद मेट्रिक्स को प्रेरित करता है लेकिन इन्हें आसानी से देखा नहीं जा सकता। तब से के एम्बेडेड सबमैनिफोल्ड के रूप में प्रस्तुत किया गया है किसी भी (फ्लैट) उत्पाद संरचना पर स्वाभाविक रूप से उपमानों के रूप में प्रस्तुत किए जाते हैं इसी तरह, क्लेन बोतल के मानक त्रि-आयामी विज़ुअलाइज़ेशन फ्लैट मीट्रिक प्रस्तुत नहीं करते हैं। मोबियस पट्टी का मानक निर्माण, कागज की पट्टी के सिरों को साथ जोड़कर, वास्तव में इसे सपाट मीट्रिक देता है, लेकिन यह पूर्ण नहीं है।

आयाम 3

6 ओरिएंटेबल और 4 नॉन-ओरिएंटेबल कॉम्पैक्ट फ्लैट 3-मैनिफोल्ड हैं, जो सभी सीफर्ट फाइबर स्पेस हैं;[1] वे भागफल समूह हैं 10 मरोड़-मुक्त समूह द्वारा|मरोड़-मुक्त क्रिस्टलोग्राफिक समूह[2] इसमें 4 ओरिएंटेबल और 4 नॉन-ओरिएंटेबल नॉन-कॉम्पैक्ट स्पेस भी हैं।[3]


समायोज्य

10 ओरिएंटेबल फ्लैट 3-मैनिफोल्ड्स हैं:[3]# यूक्लिडियन 3-स्पेस, .

  1. 3-टोरस , घन के विपरीत फलकों को चिपकाकर बनाया गया है।
  2. एक जोड़ी पर 1/2 मोड़ के साथ घन के विपरीत चेहरों को चिपकाकर बनाया गया मैनिफोल्ड।
  3. एक जोड़ी पर 1/4 मोड़ के साथ घन के विपरीत चेहरों को चिपकाकर बनाया गया मैनिफोल्ड।
  4. षट्कोणीय प्रिज्म के विपरीत चेहरों को हेक्सागोनल चेहरों पर 1/3 मोड़ के साथ चिपकाकर बनाया गया मैनिफोल्ड।
  5. हेक्सागोनल प्रिज्म के विपरीत चेहरों को हेक्सागोनल चेहरों पर 1/6 मोड़ के साथ चिपकाकर बनाया गया मैनिफोल्ड।
  6. हंट्ज़स्चे-वेंड्ट मैनिफोल्ड।
  7. अनेक गुना इसे साथ चिपके हुए दो समानांतर विमानों के बीच की जगह के रूप में बनाया गया है।
  8. अनेक गुना अनंत वर्गाकार चिमनी की विपरीत दीवारों को चिपकाकर बनाया गया।
  9. एक जोड़ी पर 1/2 मोड़ के साथ अनंत वर्गाकार चिमनी की विपरीत दीवारों को चिपकाकर बनाई गई मैनिफोल्ड।

गैर-उन्मुख

8 गैर-संचालनीय 3-मैनिफोल्ड्स हैं:[4]

  1. एक वृत्त और क्लेन बोतल का कार्टेशियन उत्पाद, .
  2. उपरोक्त के समान मैनिफोल्ड, लेकिन सरकना विमान के समानांतर दिशा में ट्रांसलेशनल रूप से ऑफसेट; इस दिशा में आगे बढ़ते हुए मैनिफोल्ड के विपरीत दिशा में लौट आता है।
  3. दो लंबवत ग्लाइड विमानों में बिंदु को प्रतिबिंबित करने और तीसरी दिशा में अनुवाद करने से बना मैनिफोल्ड।
  4. उपरोक्त के समान मैनिफोल्ड, लेकिन ग्लाइड विमान के समानांतर दिशा में ट्रांसलेशनल रूप से ऑफसेट; इस दिशा में आगे बढ़ते हुए मैनिफोल्ड के विपरीत दिशा में लौट आता है।
  5. एक वृत्त और (अनबाउंड) मोबियस पट्टी का कार्टेशियन उत्पाद।
  6. अनेक गुना बिंदु को अक्ष के अनुदिश अनुवादित करके और इसे लंबवत ग्लाइड विमान में प्रतिबिंबित करके बनाया गया है।
  7. एक अक्ष के अनुदिश बिंदु का अनुवाद करके और इसे समानांतर ग्लाइड विमान में प्रतिबिंबित करके बनाया गया मैनिफोल्ड।
  8. दो लंबवत ग्लाइड विमानों पर बिंदु को प्रतिबिंबित करके बनाया गया मैनिफोल्ड।

उच्च आयाम

  • यूक्लिडियन स्थान
  • टोरी
  • फ्लैट मैनिफोल्ड के उत्पाद
  • स्वतंत्र रूप से कार्य करने वाले समूहों द्वारा फ्लैट मैनिफ़ोल्ड के भागफल।

सुविधा से संबंध

अनुभागीय वक्रता | गैर-सकारात्मक अनुभागीय वक्रता वाले सभी बंद मैनिफोल्ड्स के बीच, फ्लैट मैनिफोल्ड्स को ठीक से उत्तरदायी समूह मौलिक समूह के साथ चित्रित किया जाता है।

यह एडम्स-हंस वर्नर बॉलमैन प्रमेय (1998) का परिणाम है,[5] जो इस लक्षण वर्णन को समूह क्रिया (गणित) की अधिक सामान्य सेटिंग में स्थापित करता है#हडामर्ड रिक्त स्थान के सममिति के क्रिया समूहों के प्रकार। यह अंतरिक्ष समूह#बीबरबैक के प्रमेय|बीबरबैक के प्रमेय का दूरगामी सामान्यीकरण प्रदान करता है।

एडम्स-बॉलमैन प्रमेय में विसंगति की धारणा आवश्यक है: अन्यथा, वर्गीकरण में सममित स्थान, भवन (गणित)|ब्रुहट-टिट्स भवन और बास-सेरे सिद्धांत|कैप्रैस के अविवेकी बीबरबैक प्रमेय को देखते हुए बास-सेरे पेड़ शामिल होने चाहिए- निकोलस मोनोड.[6]


यह भी देखें

संदर्भ

टिप्पणियाँ

  1. Peter Scott, The geometries of 3-manifolds. (errata), Bull. London Math. Soc. 15 (1983), no. 5, 401–487.
  2. Miatello, R. J.; Rossetti, J. P. (29 October 1999). "आइसोस्पेक्ट्रल हंट्ज़स्चे-वेंड्ट मैनिफोल्ड्स". Journal für die Reine und Angewandte Mathematik (in English). 1999 (515): 1–23. doi:10.1515/crll.1999.077. ISSN 1435-5345.
  3. 3.0 3.1 The early universe and the cosmic microwave background : theory and observations. Dordrecht: Kluwer Academic Publishers. 2003. pp. 166–169. ISBN 978-1-4020-1800-8.
  4. Conway, J. H.; Rossetti, J.P. (24 October 2005). "प्लैटिकोसम्स का वर्णन". arXiv:math/0311476.
  5. Adams, S.; Ballmann, W. (1998). "हैडामर्ड रिक्त स्थान के एमेनेबल आइसोमेट्री समूह". Math. Ann. 312 (1): 183–195. doi:10.1007/s002080050218. S2CID 15874907.
  6. Caprace, P.-E.; Monod, N. (2015). "An indiscrete Bieberbach theorem: from amenable CAT(0) groups to Tits buildings". J. École Polytechnique. 2: 333–383. arXiv:1502.04583. doi:10.5802/jep.26.


ग्रन्थसूची

  • Kobayashi, Shoshichi; Nomizu, Katsumi (1996), Foundations of differential geometry. Vol. I (Reprint of the 1963 original ed.), New York: John Wiley & Sons, Inc., pp. 209–224, ISBN 0-471-15733-3
  • Schoenflies, A. (1891), Kristallsysteme und Kristallstruktur, Teubner.


बाहरी संबंध