सामूहिक सुविस्तृत घटनाएँ

From Vigyanwiki
Revision as of 17:19, 6 July 2023 by alpha>Indicwiki (Created page with "{{no footnotes|date=September 2017}} {{Probability fundamentals}} संभाव्यता सिद्धांत और तर्क में, घटना (स...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

संभाव्यता सिद्धांत और तर्क में, घटना (संभावना सिद्धांत) का एक सेट (गणित) संयुक्त रूप से या सामूहिक रूप से संपूर्ण होता है यदि कम से कम एक घटना घटित होनी चाहिए। उदाहरण के लिए, जब एक पासा घुमाते हैं|छह-तरफा पासा, तो एक ही परिणाम (संभावना) की घटनाएं 1, 2, 3, 4, 5, और 6 गेंदें सामूहिक रूप से संपूर्ण होती हैं, क्योंकि वे संभावित परिणामों की पूरी श्रृंखला को शामिल करती हैं।

सामूहिक रूप से संपूर्ण घटनाओं का वर्णन करने का एक और तरीका यह है कि उनके संघ (सेट सिद्धांत) को संपूर्ण नमूना स्थान के भीतर सभी घटनाओं को कवर करना चाहिए। उदाहरण के लिए, घटना ए और बी को सामूहिक रूप से संपूर्ण कहा जाता है

जहाँ S नमूना स्थान है।

इसकी तुलना परस्पर अनन्य घटनाओं के समूह की अवधारणा से करें। ऐसे सेट में एक निश्चित समय में एक से अधिक घटनाएँ घटित नहीं हो सकतीं। (पारस्परिक बहिष्करण के कुछ रूपों में केवल एक ही घटना घटित हो सकती है।) सभी संभावित डाई रोल का सेट परस्पर अनन्य और सामूहिक रूप से संपूर्ण (यानी, एमईसीई सिद्धांत) दोनों है। घटनाएँ 1 और 6 परस्पर अनन्य हैं लेकिन सामूहिक रूप से संपूर्ण नहीं हैं। यहाँ तक कि घटनाएँ (2,4 या 6) और नॉट-6 (1,2,3,4, या 5) भी सामूहिक रूप से संपूर्ण हैं लेकिन परस्पर अनन्य नहीं हैं। पारस्परिक बहिष्कार के कुछ रूपों में केवल एक ही घटना घटित हो सकती है, चाहे सामूहिक रूप से संपूर्ण हो या नहीं। उदाहरण के लिए, कई कुत्तों के समूह के लिए एक विशेष बिस्किट उछालना दोहराया नहीं जा सकता, चाहे कोई भी कुत्ता उसे उठा ले।

ऐसी घटना का एक उदाहरण जो सामूहिक रूप से संपूर्ण और परस्पर अनन्य दोनों है, एक सिक्का उछालना है। परिणाम या तो हेड या टेल, या पी (हेड या टेल) = 1 होना चाहिए, इसलिए परिणाम सामूहिक रूप से संपूर्ण हैं। जब चित आता है, तो पट नहीं आ सकता, या p (चित और पट) = 0, इसलिए परिणाम भी परस्पर अनन्य होते हैं।

एक ही समय में घटनाओं के सामूहिक रूप से संपूर्ण और पारस्परिक रूप से अनन्य होने का एक और उदाहरण है, छह-तरफा पासे को घुमाने के एक प्रयोग (संभावना सिद्धांत) में घटना सम (2,4 या 6) और घटना विषम (1,3 या 5)। ये दोनों घटनाएँ परस्पर अनन्य हैं क्योंकि सम और विषम परिणाम कभी भी एक ही समय में नहीं हो सकते। सम और विषम दोनों घटनाओं का संघ (सेट सिद्धांत) पासे को घुमाने का नमूना स्थान देता है, इसलिए सामूहिक रूप से संपूर्ण है।

इतिहास

संपूर्ण शब्द का प्रयोग साहित्य में कम से कम 1914 से किया जा रहा है। यहां कुछ उदाहरण दिए गए हैं:

निम्नलिखित कॉउटुरेट के पाठ, द अलजेब्रा ऑफ लॉजिक (1914) के पृष्ठ 23 पर एक फुटनोट के रूप में दिखाई देता है:[1]

जैसा कि श्रीमती LADD·FRANKLlN ने वास्तव में टिप्पणी की है (बाल्डविन, डिक्शनरी ऑफ फिलॉसफी एंड साइकोलॉजी, लेख लॉज़ ऑफ थॉट[2]), विरोधाभास का सिद्धांत विरोधाभासों को परिभाषित करने के लिए पर्याप्त नहीं है; बहिष्कृत मध्य का सिद्धांत जोड़ा जाना चाहिए जो समान रूप से विरोधाभास के सिद्धांत के नाम का हकदार है। यही कारण है कि श्रीमती लैड-फ्रैंकलिन उन्हें क्रमशः बहिष्करण का सिद्धांत और थकावट का सिद्धांत कहने का प्रस्ताव करती हैं, क्योंकि पहले के अनुसार, दो विरोधाभासी शब्द अनन्य हैं (दूसरे में से एक); और, दूसरे के अनुसार, वे संपूर्ण हैं (प्रवचन के ब्रह्मांड के)। (जोर देने के लिए इटैलिक जोड़ा गया)

स्टीफन क्लेन की कार्डिनल संख्याओं की चर्चा में, इंट्रोडक्शन टू मेटामैथेमेटिक्स (1952) में, उन्होंने संपूर्ण के साथ पारस्परिक रूप से अनन्य शब्द का उपयोग किया है:[3]

इसलिए, किन्हीं दो कार्डिनल एम और एन के लिए, तीन रिश्ते एम <एन, एम = एन और एम > एन 'परस्पर अनन्य' हैं, यानी उनमें से एक से अधिक नहीं टिक सकते। ¶ यह सिद्धांत के उन्नत चरण तक प्रकट नहीं होता है। . . क्या वे 'संपूर्ण' हैं, यानी क्या तीनों में से कम से कम एक को कायम रहना चाहिए। (जोर देने के लिए इटैलिक जोड़ा गया, क्लेन 1952:11; मूल में एम और एन प्रतीकों पर दोहरी पट्टियाँ हैं)।

यह भी देखें

संदर्भ

  1. Couturat, Louis & Gillingham Robinson, Lydia (Translator) (1914). तर्क का बीजगणित. Chicago and London: The Open Court Publishing Company.{{cite book}}: CS1 maint: uses authors parameter (link)
  2. Baldwin (1914). "विचार के नियम". Dictionary of Philosophy and Psychology. p. 23.
  3. Kleene, Stephen C. (1952). मेटामैथेमेटिक्स का परिचय (6th edition 1971 ed.). Amsterdam, NY: North-Holland Publishing Company. ISBN 0-7204-2103-9.


अतिरिक्त स्रोत

  • Kemeny, et al., John G. (1959). परिमित गणितीय संरचनाएँ (First ed.). Englewood Cliffs, N.J.: Prentice-Hall, Inc. ASIN B0006AW17Y.{{cite book}}: CS1 maint: uses authors parameter (link) एलसीसीएन: 59-12841
  • Tarski, Alfred (1941). तर्कशास्त्र और निगमनात्मक विज्ञान की पद्धति का परिचय (Reprint of 1946 2nd edition (paperback) ed.). New York: Dover Publications, Inc. ISBN 0-486-28462-X.

श्रेणी:संभावना सिद्धांत