प्राइमफ्री अनुक्रम

From Vigyanwiki
Revision as of 09:51, 26 July 2023 by Manidh (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणित में, अभाज्य अनुक्रम पूर्णांक संख्याओं का एक अनुक्रम है जिसमें कोई अभाज्य संख्या नहीं होती है। अधिक विशेष रूप से, इसका कारण सामान्यतः फाइबोनैचि संख्याओं के समान पुनरावृत्ति संबंध द्वारा परिभाषित अनुक्रम होता है, किन्तु विभिन्न प्रारंभिक स्थितियों के कारण अनुक्रम के सभी सदस्य मिश्रित संख्याएं होते हैं जिनमें सभी का एक सामान्य भाजक नहीं होता है। इसे बीजगणितीय रूप से रखने के लिए, इस प्रकार का अनुक्रम दो मिश्रित संख्याओं a1 और a2 के उचित विकल्प द्वारा परिभाषित किया गया है। जैसे कि सबसे बड़ा सामान्य भाजक 1 के सामान्तर है, और ऐसा है कि सूत्र से गणना की गई परिकलित संख्याओं के अनुक्रम में कोई अभाज्य संख्याएँ नहीं हैं

.

इस प्रकार का पहला प्राइमफ्री अनुक्रम वर्ष 1964 में रोनाल्ड ग्राहम द्वारा प्रकाशित किया गया था।

विल्फ का क्रम

हर्बर्ट विल्फ द्वारा पाए गए एक प्राइमफ्री अनुक्रम में प्रारंभिक पद हैं

(sequence A083216 in the OEIS)

इस अनुक्रम का प्रत्येक पद मिश्रित है, इसका प्रमाण अभाज्य संख्याओं के एक परिमित समुच्चय के सदस्यों के मॉड्यूलो फाइबोनैचि-जैसे संख्या अनुक्रमों मॉड्यूलर अंकगणित की आवधिकता पर निर्भर करता है जो अभाज्य संख्याओं के एक सीमित समूह के सदस्य हैं। प्रत्येक प्राइम के लिए , अनुक्रम में वह स्थितियाँ जहाँ संख्याएँ विभाज्य हैं को एक आवधिक पैटर्न में दोहराएं और समूह में भिन्न-भिन्न प्राइम में ओवरलैपिंग पैटर्न होते हैं जिसके परिणामस्वरूप पूरे अनुक्रम के लिए एक कवरिंग समूह होता है।

गैर-तुच्छता

प्रश्न के गैर-तुच्छ होने के लिए यह आवश्यक है कि अभाज्य अनुक्रम के प्रारंभिक पद सहअभाज्य हों। यदि प्रारंभिक पद एक अभाज्य कारक साझा करते हैं (उदा., समूह और कुछ के लिए और गुणन के वितरण गुण के कारण दोनों 1 से बड़े हैं और सामान्यतः अनुक्रम में सभी पश्चात् के मान इसके गुणज होंगे . इस स्थितियों में, अनुक्रम में सभी संख्याएँ मिश्रित होंगी, किन्तु एक तुच्छ कारण से होती हैं।

प्रारंभिक पदों का क्रम भी महत्वपूर्ण है. पॉल हॉफमैन (विज्ञान लेखक) की पॉल एर्डोज़ की जीवनी में, वह आदमी जो केवल संख्याओं से प्यार करता था, विल्फ अनुक्रम का उदाहरण दिया गया है किन्तु प्रारंभिक शब्दों को बदल दिया गया है। परिणामी अनुक्रम पहले सौ पदों के लिए अभाज्य-मुक्त प्रतीत होता है, किन्तु पद 138 45-अंकीय अभाज्य है .[1]

अन्य अनुक्रम

अनेक अन्य प्राइमफ्री अनुक्रम ज्ञात हैं:

(अनुक्रम ओईआईएस:A083104 पूर्णांक अनुक्रमों के ऑन-लाइन विश्वकोश में; ग्राहम 1964),
(अनुक्रम ओईआईएस:A083105 ओईआईएस में; डोनाल्ड नुथ 1990), और
(अनुक्रम ओईआईएस:A082411 ओईआईएस में; निकोल 1999)।

इस प्रकार का अनुक्रम सबसे छोटे ज्ञात आरंभिक पदों के साथ है

(अनुक्रम ओईआईएस:A221286 ओईआईएस में; वसेमिरनोव 2004)।

टिप्पणियाँ

  1. Sloane, N. J. A. (ed.). "Sequence A108156". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.

संदर्भ

बाहरी संबंध