फ्लैट टोपोलॉजी

From Vigyanwiki
Revision as of 19:33, 8 July 2023 by alpha>Indicwiki (Created page with "गणित में, फ्लैट टोपोलॉजी एक ग्रोथेंडिक टोपोलॉजी है जिसका उपयोग ...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणित में, फ्लैट टोपोलॉजी एक ग्रोथेंडिक टोपोलॉजी है जिसका उपयोग बीजगणितीय ज्यामिति में किया जाता है। इसका उपयोग फ्लैट कोहोमोलॉजी के सिद्धांत को परिभाषित करने के लिए किया जाता है; यह वंश के सिद्धांत (श्रेणी सिद्धांत) (वफादारी से सपाट वंश) में भी एक मौलिक भूमिका निभाता है।[1] यहां फ्लैट शब्द फ्लैट मॉड्यूल से आया है।

कई अलग-अलग फ्लैट टोपोलॉजी हैं, जिनमें से सबसे आम 'एफपीपीएफ टोपोलॉजी' और 'एफपीक्यूसी टोपोलॉजी' हैं। एफपीपीएफ का मतलब हैfidèlement plate de présentation finie, और इस टोपोलॉजी में, एफ़िन योजनाओं का एक रूपवाद एक कवरिंग रूपवाद है यदि यह ईमानदारी से सपाट और सीमित प्रस्तुति का है। एफपीक्यूसी का मतलब हैfidèlement plate et quasi-compacte, और इस टोपोलॉजी में, एफ़िन योजनाओं का एक रूपवाद एक कवरिंग रूपवाद है यदि यह ईमानदारी से सपाट है। दोनों श्रेणियों में, एक कवरिंग परिवार को एक ऐसे परिवार के रूप में परिभाषित किया गया है जो ज़ारिस्की ओपन उपसमुच्चय पर एक कवर है।[2] एफपीक्यूसी टोपोलॉजी में, कोई भी ईमानदारी से सपाट और अर्ध-कॉम्पैक्ट रूपवाद एक आवरण है।[3] ये टोपोलॉजी वंश (श्रेणी सिद्धांत) से निकटता से संबंधित हैं। अर्ध सघनता या परिमित प्रस्तुति जैसी किसी अतिरिक्त परिमितता की स्थिति के बिना शुद्ध ईमानदारी से सपाट टोपोलॉजी का अधिक उपयोग नहीं किया जाता है क्योंकि यह उपविहित नहीं है; दूसरे शब्दों में, प्रतिनिधित्व करने योग्य फ़ैक्टरों को ढेर होने की आवश्यकता नहीं है।

दुर्भाग्य से फ्लैट टोपोलॉजी के लिए शब्दावली मानकीकृत नहीं है। कुछ लेखक प्रीटोपोलॉजी के लिए टोपोलॉजी शब्द का उपयोग करते हैं, और कई अलग-अलग प्रीटोपोलॉजी हैं जिन्हें कभी-कभी एफपीपीएफ या एफपीक्यूसी (प्री) टोपोलॉजी कहा जाता है, जो कभी-कभी एक ही टोपोलॉजी देते हैं।

फ़्लैट कोहोमोलॉजी की शुरुआत ग्रोथेंडिक ने लगभग 1960 में की थी।[4]


बड़ी और छोटी एफपीपीएफ साइटें

मान लीजिए कि X एक एफ़िन योजना है। हम एक्स के 'एफपीपीएफ कवर' को आकारिकी के एक सीमित और संयुक्त रूप से विशेषण परिवार के रूप में परिभाषित करते हैं

a : एक्सa → एक्स)

प्रत्येक एक्स के साथa एफ़िन और प्रत्येक φa समतल आकारिकी, योजना सिद्धांत की शब्दावली#परिमित.2सी अर्ध-परिमित.2सी परिमित प्रकार.2सी और परिमित प्रस्तुति आकारिकी। यह एक प्रीटोपोलॉजी उत्पन्न करता है: एक्स मनमाना के लिए, हम एक परिवार के रूप में एक्स के एफपीपीएफ कवर को परिभाषित करते हैं

a : एक्सa → एक्स)

जो कि आधार के एक्स के एक खुले एफ़िन उपयोजना में बदलने के बाद एक एफपीपीएफ कवर है। यह प्रीटोपोलॉजी एक टोपोलॉजी उत्पन्न करती है जिसे एफपीपीएफ टोपोलॉजी कहा जाता है। (यह उस टोपोलॉजी के समान नहीं है जो हमें मिलती यदि हम मनमाने ढंग से एक्स और एक्स के साथ शुरू करतेa और कवरिंग परिवारों को फ्लैट, अंतिम रूप से प्रस्तुत आकारिकी के संयुक्त रूप से विशेषण वाले परिवार के रूप में लिया।) हम एफपीपीएफ टोपोलॉजी के साथ योजनाओं की श्रेणी के लिए एफपीपीएफ लिखते हैं।

'एक्स' की 'छोटी एफपीपीएफ साइट' श्रेणी ओ(एक्स) हैfppf) जिनकी वस्तुएं एक निश्चित रूपवाद यू → एक्स के साथ योजनाएं यू हैं जो कुछ कवरिंग परिवार का हिस्सा हैं। (इसका मतलब यह नहीं है कि रूपवाद सपाट है, परिमित रूप से प्रस्तुत किया गया है।) रूपवाद एक्स के निश्चित मानचित्रों के साथ संगत योजनाओं के रूपवाद हैं। 'एक्स' की बड़ी एफपीपीएफ साइट श्रेणी एफपीपीएफ/एक्स है, यानी, X के लिए एक निश्चित मानचित्र वाली योजनाओं की श्रेणी, fppf टोपोलॉजी के साथ मानी जाती है।

एफपीपीएफ फिडेलमेंट प्लेट डी प्रेजेंटेशन फ़िनी का संक्षिप्त नाम है, यानी, ईमानदारी से सपाट और सीमित प्रस्तुति। समतल और परिमित रूप से प्रस्तुत आकारिकी का प्रत्येक विशेषण परिवार इस टोपोलॉजी के लिए एक कवरिंग परिवार है, इसलिए यह नाम है। एफपीपीएफ प्रीटोपोलॉजी की परिभाषा एक अतिरिक्त अर्ध-परिमितता स्थिति के साथ भी दी जा सकती है; यह परिणाम 17.16.2 इंच से अनुसरण करता है

ईजीए IV4 कि यह वही टोपोलॉजी देता है।

बड़ी और छोटी एफपीक्यूसी साइटें

मान लीजिए कि X एक एफ़िन योजना है। हम एक्स के 'एफपीक्यूसी कवर' को आकारिकी के एक सीमित और संयुक्त रूप से विशेषण परिवार के रूप में परिभाषित करते हैं।α : एक्सα → X} प्रत्येक X के साथα एफ़िन और प्रत्येक यूα सपाट रूपवाद. यह एक प्रीटोपोलॉजी उत्पन्न करता है: एक्स मनमाना के लिए, हम एक्स के एक एफपीक्यूसी कवर को एक परिवार के रूप में परिभाषित करते हैं {यूα : एक्सα → (यह उस टोपोलॉजी के समान नहीं है जो हमें मिलती यदि हम मनमाने ढंग से एक्स और एक्स के साथ शुरू करतेα और कवरिंग परिवारों को फ्लैट आकारिकी के संयुक्त रूप से विशेषण वाले परिवार के रूप में लिया।) हम एफपीक्यूसी टोपोलॉजी के साथ योजनाओं की श्रेणी के लिए एफपीक्यूसी लिखते हैं।

'एक्स' की 'छोटी एफपीक्यूसी साइट' श्रेणी ओ(एक्स) हैfpqc) जिनकी वस्तुएं एक निश्चित रूपवाद यू → एक्स के साथ योजनाएं यू हैं जो कुछ कवरिंग परिवार का हिस्सा हैं। आकारिकी एक्स के लिए निश्चित मानचित्रों के साथ संगत योजनाओं के रूप हैं। 'एक्स' की 'बड़ी एफपीक्यूसी साइट' श्रेणी एफपीक्यूसी/एक्स है, यानी, एक्स के लिए एक निश्चित मानचित्र वाली योजनाओं की श्रेणी, एफपीक्यूसी टोपोलॉजी के साथ मानी जाती है। .

एफपीक्यूसी फिडेलमेंट प्लेट क्वासी-कॉम्पैक्ट का संक्षिप्त रूप है, यानी ईमानदारी से फ्लैट और क्वासी-कॉम्पैक्ट। फ्लैट और अर्ध-कॉम्पैक्ट आकारिकी का प्रत्येक विशेषण परिवार इस टोपोलॉजी के लिए एक कवरिंग परिवार है, इसलिए नाम।

फ्लैट कोहोमोलॉजी

कोहोमोलॉजी समूहों को परिभाषित करने की प्रक्रिया मानक एक है: कोहोमोलॉजी को एबेलियन समूहों के एक शीफ के खंड (शीफ सिद्धांत) को लेने वाले फ़ैक्टर के व्युत्पन्न फ़ैक्टर के अनुक्रम के रूप में परिभाषित किया गया है।

हालांकि ऐसे समूहों में कई अनुप्रयोग होते हैं, सामान्य तौर पर उनकी गणना करना आसान नहीं होता है, सिवाय उन मामलों को छोड़कर जहां वे अन्य सिद्धांतों, जैसे कि ईटेल कोहोमोलॉजी, को कम कर देते हैं।

उदाहरण

निम्नलिखित उदाहरण से पता चलता है कि बिना किसी परिमितता की स्थिति के ईमानदारी से सपाट टोपोलॉजी अच्छा व्यवहार क्यों नहीं करती है। मान लीजिए कि X बीजगणितीय रूप से बंद फ़ील्ड k पर एफ़िन रेखा है। X के प्रत्येक बंद बिंदु x के लिए हम स्थानीय रिंग R पर विचार कर सकते हैंx इस बिंदु पर, जो एक अलग मूल्यांकन रिंग है जिसके स्पेक्ट्रम में एक बंद बिंदु और एक खुला (सामान्य) बिंदु है। हम एक योजना Y प्राप्त करने के लिए उनके खुले बिंदुओं की पहचान करके इन स्पेक्ट्रा को एक साथ चिपकाते हैं। Y से X तक एक प्राकृतिक मानचित्र है। एफ़िन लाइन X सेट Spec(R) द्वारा कवर किया गया हैx) जो ईमानदारी से सपाट टोपोलॉजी में खुले हैं, और इनमें से प्रत्येक सेट में Y के लिए एक प्राकृतिक मानचित्र है, और ये मानचित्र चौराहों पर समान हैं। हालाँकि उन्हें X से Y तक का नक्शा देने के लिए संयोजित नहीं किया जा सकता है, क्योंकि X और Y के अंतर्निहित स्थानों में अलग-अलग टोपोलॉजी हैं।

यह भी देखें

टिप्पणियाँ

  1. "Form of an (algebraic) structure", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  2. SGA III1, IV 6.3.
  3. SGA III1, IV 6.3, Proposition 6.3.1(v).
  4. *Grothendieck, Alexander; Raynaud, Michèle (2003) [1971], Revêtements étales et groupe fondamental (SGA 1), Documents Mathématiques (Paris) [Mathematical Documents (Paris)], vol. 3, Paris: Société Mathématique de France, p. XI.4.8, arXiv:math/0206203, Bibcode:2002math......6203G, ISBN 978-2-85629-141-2, MR 2017446


संदर्भ


बाहरी संबंध