समतुल्य सहसंरचना

From Vigyanwiki
Revision as of 19:35, 8 July 2023 by alpha>Indicwiki (Created page with "गणित में, इक्विवेरिएंट सहसंगति सिद्धांतया ''बोरेल कोहोमोलॉजी'') ब...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणित में, इक्विवेरिएंट सहसंगति सिद्धांतया बोरेल कोहोमोलॉजी) बीजगणितीय टोपोलॉजी से समूह सहसंरचना सिद्धांत है जो ग्रुप एक्शन (गणित) के साथ टोपोलॉजिकल स्पेस पर लागू होता है। इसे समूह सहसंगति विज्ञान के एक सामान्य सामान्यीकरण और एक सामान्य सहसंयोजी सिद्धांत के रूप में देखा जा सकता है। विशेष रूप से, किसी स्थान का समतुल्य सहसंयोजी वलय एक टोपोलॉजिकल समूह की कार्रवाई के साथ गुणांक रिंग के साथ साधारण कोहोमोलोजी रिंग के रूप में परिभाषित किया गया है समरूप भागफल का :

अगर तुच्छ समूह है, यह साधारण कोहॉमोलॉजी रिंग है , जबकि यदि संकुचन योग्य है, यह वर्गीकृत स्थान के कोहोमोलॉजी रिंग में कम हो जाता है (अर्थात, का समूह सहसंगति विज्ञान जब G परिमित है।) यदि G, X पर स्वतंत्र रूप से कार्य करता है, तो विहित मानचित्र एक समरूप तुल्यता है और इसलिए किसी को यह मिलता है:


परिभाषाएँ

समतुल्य सहसंगति को परिभाषित करना भी संभव है

 का  ए में गुणांक के साथ
-मॉड्यूल ए; ये एबेलियन समूह हैं।

यह निर्माण स्थानीय गुणांकों के साथ सह-समरूपता का अनुरूप है।

यदि X एक मैनिफोल्ड है, G एक सघन झूठ समूह है और वास्तविक संख्याओं का क्षेत्र या जटिल संख्याओं का क्षेत्र (सबसे विशिष्ट स्थिति) है, तो उपरोक्त कोहोलॉजी की गणना तथाकथित कार्टन मॉडल (समतुल्य अंतर रूप देखें) का उपयोग करके की जा सकती है।

निर्माण को अन्य कोहोमोलोजी सिद्धांतों के साथ भ्रमित नहीं किया जाना चाहिए, जैसे कि ब्रेडन कोहोमोलॉजी या अपरिवर्तनीय विभेदक रूपों की कोहोमोलॉजी: यदि जी एक कॉम्पैक्ट लाई समूह है, तो, औसत तर्क द्वारा[citation needed], किसी भी रूप को अपरिवर्तनीय बनाया जा सकता है; इस प्रकार, अपरिवर्तनीय विभेदक रूपों के सह-समरूपता से नई जानकारी नहीं मिलती है।

कोस्ज़ुल द्वंद्व को समतुल्य सहसंगति और साधारण सहसंगति के बीच माना जाता है।

ग्रुपॉइड कोहोमोलॉजी के साथ संबंध

एक झूठ समूह के लिए स्मूथ मैनिफोल्ड की समतुल्य सहसंरचना[1] लाई ग्रुपॉइड के ग्रुपॉइड कोहोमोलॉजी का एक विशेष उदाहरण है। ऐसा इसलिए है क्योंकि दिया गया है -अंतरिक्ष एक सघन झूठ समूह के लिए , एक संबद्ध ग्रुपॉइड<ब्लॉककोट> हैजिनके समतुल्य कोहोलॉजी समूहों की गणना कार्टन कॉम्प्लेक्स का उपयोग करके की जा सकती है जो ग्रुपॉइड के डी-रैम डबल कॉम्प्लेक्स का समग्रीकरण है। कार्टन कॉम्प्लेक्स में शब्द <ब्लॉककोट> हैं</ब्लॉकक्वॉट>कहां लाई समूह से दोहरे लाई बीजगणित का सममित बीजगणित है , और से मेल खाता है -अपरिवर्तनीय रूप. यह कोहॉमोलॉजी की गणना के लिए एक विशेष रूप से उपयोगी उपकरण है एक सघन झूठ समूह के लिए चूँकि इसकी गणना

के सह-समरूपता के रूप में की जा सकती है

जहां किसी बिंदु पर कार्रवाई तुच्छ है। फिर, <ब्लॉककोट>उदाहरण के लिए,

के बाद से -दोहरी झूठ बीजगणित पर कार्रवाई तुच्छ है।

समरूपी भागफल

होमोटोपी भागफल, जिसे होमोटोपी कक्षा स्थान या बोरेल निर्माण भी कहा जाता है, कक्षा स्थान (का भागफल) का "समरूप रूप से सही" संस्करण है इसके द्वारा -कार्रवाई) जिसमें पहले इसे एक बड़े लेकिन समरूप समतुल्य स्थान से प्रतिस्थापित किया जाता है ताकि कार्रवाई समूह कार्रवाई (गणित) होने की गारंटी हो।

इस प्रयोजन के लिए, G के लिए सार्वभौमिक बंडल EG → BG का निर्माण करें और याद रखें कि EG एक निःशुल्क G-क्रिया को स्वीकार करता है। फिर उत्पाद EG ×−1x): इसके अलावा, यह विकर्ण क्रिया मुफ़्त है क्योंकि यह ईजी पर मुफ़्त है। तो हम समरूप भागफल X को परिभाषित करते हैंG इस मुक्त जी-क्रिया का कक्षा स्थान (ईजी × एक्स)/जी होना।

दूसरे शब्दों में, होमोटॉपी भागफल बीजी पर संबद्ध बंडल|संबंधित एक्स-बंडल है जो एक स्थान एक्स और मुख्य बंडल ईजी → बीजी पर जी की कार्रवाई से प्राप्त होता है। यह बंडल X → XG → बीजी को 'बोरेल फ़िब्रेशन' कहा जाता है।

समरूप भागफल का एक उदाहरण

निम्नलिखित उदाहरण [1] का प्रस्ताव 1 है।

मान लीजिए कि X एक जटिल प्रक्षेप्य बीजगणितीय वक्र है। हम जटिल बिंदुओं के सेट के साथ एक्स को एक टोपोलॉजिकल स्पेस के रूप में पहचानते हैं , जो एक कॉम्पैक्ट रीमैन सतह है। मान लीजिए G एक जटिल सरल रूप से जुड़ा हुआ अर्धसरल झूठ समूह है। फिर एक्स पर कोई भी प्रमुख जी-बंडल वर्गीकृत स्थान के बाद से एक तुच्छ बंडल के लिए आइसोमोर्फिक है n-कनेक्टेड |2-कनेक्टेड है और एक्स का वास्तविक आयाम 2 है। कुछ चिकने जी-बंडल को ठीक करें एक्स पर। फिर कोई भी प्रमुख जी-बंडल के लिए समरूपी है . दूसरे शब्दों में, सेट एक्स पर एक प्रमुख जी-बंडल और उस पर एक जटिल-विश्लेषणात्मक संरचना वाले जोड़े के सभी समरूपता वर्गों को जटिल-विश्लेषणात्मक संरचनाओं के सेट के साथ पहचाना जा सकता है या समकक्ष रूप से एक्स पर होलोमोर्फिक कनेक्शन का सेट (चूंकि कनेक्शन आयाम कारण के लिए पूर्णांक हैं)। एक अनंत-आयामी जटिल एफ़िन स्पेस है और इसलिए संकुचन योग्य है।

होने देना के सभी ऑटोमोर्फिज्म का समूह बनें (अर्थात, गेज समूह।) फिर का समरूप भागफल द्वारा जटिल-विश्लेषणात्मक (या समकक्ष बीजीय) प्रिंसिपल जी-बंडलों को एक्स पर वर्गीकृत करता है; यानी, यह सटीक रूप से वर्गीकरण स्थान है असतत समूह का .

कोई प्रमुख बंडलों के मॉड्यूलि स्टैक को परिभाषित कर सकता है भागफल ढेर के रूप में और फिर समरूप भागफल परिभाषा के अनुसार, होमोटॉपी प्रकार है .

समतुल्य विशेषता वर्ग

मान लीजिए E, G-मैनिफोल्ड M पर एक समवर्ती वेक्टर बंडल है। यह एक वेक्टर बंडल को जन्म देता है समरूप भागफल पर ताकि वह बंडल की ओर खींचकर वापस आ जाए ऊपर . E का एक समतुल्य अभिलक्षणिक वर्ग तब का एक सामान्य अभिलक्षणिक वर्ग होता है , जो कोहोमोलॉजी रिंग के पूरा होने का एक तत्व है . (चेर्न-वील सिद्धांत को लागू करने के लिए, ईजी के एक परिमित-आयामी सन्निकटन का उपयोग किया जाता है।)

वैकल्पिक रूप से, कोई पहले एक समतुल्य चेर्न वर्ग को परिभाषित कर सकता है और फिर अन्य विशिष्ट वर्गों को सामान्य मामले की तरह चेर्न वर्गों के अपरिवर्तनीय बहुपद के रूप में परिभाषित कर सकता है; उदाहरण के लिए, एक समवर्ती रेखा बंडल का समवर्ती टॉड वर्ग टॉड फ़ंक्शन है जिसका मूल्यांकन बंडल के समवर्ती प्रथम चेर्न वर्ग में किया जाता है। (एक लाइन बंडल का एक समतुल्य टोड वर्ग समतुल्य प्रथम चेर्न वर्ग में एक शक्ति श्रृंखला है (गैर-समतुल्य मामले में बहुपद नहीं); इसलिए, यह समवर्ती कोहोलॉजी रिंग के पूरा होने से संबंधित है।)

गैर-समतुल्य मामले में, पहले चेर्न वर्ग को कई गुना एम पर जटिल रेखा बंडलों के सभी समरूपता वर्गों के सेट के बीच एक आक्षेप के रूप में देखा जा सकता है [2] समतुल्य मामले में, इसका अनुवाद इस प्रकार है: समतुल्य प्रथम चेर्न समवर्ती जटिल रेखा बंडलों के सभी समरूपता वर्गों के सेट के बीच एक आक्षेप देता है और .

स्थानीयकरण प्रमेय

स्थानीयकरण प्रमेय समतुल्य सहविज्ञान में सबसे शक्तिशाली उपकरणों में से एक है।

यह भी देखें

टिप्पणियाँ

  1. Behrend 2004
  2. using Čech cohomology and the isomorphism given by the exponential map.


संदर्भ

  • Atiyah, Michael; Bott, Raoul (1984), "The moment map and equivariant cohomology", Topology, 23: 1–28, doi:10.1016/0040-9383(84)90021-1
  • Brion, M. (1998). "Equivariant cohomology and equivariant intersection theory" (PDF). Representation Theories and Algebraic Geometry. Nato ASI Series. Vol. 514. Springer. pp. 1–37. arXiv:math/9802063. doi:10.1007/978-94-015-9131-7_1. ISBN 978-94-015-9131-7. S2CID 14961018.
  • Goresky, Mark; Kottwitz, Robert; MacPherson, Robert (1998), "Equivariant cohomology, Koszul duality, and the localization theorem", Inventiones Mathematicae, 131: 25–83, CiteSeerX 10.1.1.42.6450, doi:10.1007/s002220050197, S2CID 6006856
  • Hsiang, Wu-Yi (1975). Cohomology Theory of Topological Transformation Groups. Springer. doi:10.1007/978-3-642-66052-8. ISBN 978-3-642-66052-8.
  • Tu, Loring W. (March 2011). "What Is . . . Equivariant Cohomology?" (PDF). Notices of the American Mathematical Society. 58 (3): 423–6. arXiv:1305.4293.



ढेर से संबंध

  • Behrend, K. (2004). "Cohomology of stacks" (PDF). प्रतिच्छेदन सिद्धांत और मापांक. ICTP Lecture Notes. Vol. 19. pp. 249–294. ISBN 9789295003286. पीडीएफ पेज 10 में उदाहरणों के साथ मुख्य परिणाम है।

अग्रिम पठन


बाहरी संबंध