पुनरावृत्त फ़ंक्शन सिस्टम

From Vigyanwiki
सीरपिंस्की त्रिकोण आईएफएस का उपयोग करके बनाया गया है।
रंगीन आईएफएस को एपोफिसिस सॉफ्टवेयर का उपयोग करके डिजाइन किया गया है और इलेक्ट्रिक मेष द्वारा प्रस्तुत किया गया है।

पुनरावृत्त फ़ंक्शन सिस्टम (आईएफएस) फ्रेक्टल संपीड़न के निर्माण की एक विधि है जिसके परिणामस्वरूप फ्रेक्टल संपीड़न प्रायः समान होते हैं। फ्रेक्टल संपीड़न, ज्यामिति फ़ंक्शन की तुलना में समूह सिद्धांत से अधिक संबंधित होते हैं।[1] जिन्हें 1981 में प्रस्तुत किया गया था।

सामान्यतः इन्हें फ्रेक्टल संपीड़न कहा जाता है ये फ़ंक्शन किसी भी संख्या विस्तार के हो सकते हैं, लेकिन सामान्यतः इनकी गणना और 2डी में की जाती है। फ्रेक्टल संपीड़न स्वयं के कई प्ररूपों के युग्म से बने होते है। प्रत्येक प्रारूप एक फ़ंक्शन ("फ़ंक्शन सिस्टम") द्वारा रूपांतरित होते है। उदाहरण के लिए एक सीरपिंस्की त्रिकोण है। फ्रेक्टल संपीड़न सामान्यतः संकुचन मानचित्रण के होते हैं, जिसका अर्थ है कि वे कई बिंदुओं मे एक साथ प्रयुक्त होते हैं और आकृतियों को छोटा बनाते हैं। इसलिए एक फ्रेक्टल संपीड़न का आकार स्वयं की कई संभवतः अतिव्यापी छोटी प्रतियों से बना होता है, जिनमें से प्रत्येक फ़ंक्शन स्वयं की प्रतियों से बना होता है। यह इसकी स्व-समान फ्रेक्टल संपीड़न संरचना का स्रोत है।

परिभाषा

औपचारिक रूप से एक आईएफएस पूर्ण संरचना पर संकुचन चित्रण का एक सीमित समूह है:[2]

यह एक पुनरावृत्त फ़ंक्शन सिस्टम है यदि प्रत्येक संपूर्ण फ़ंक्शन पर एक संकुचन है।

विशेषताएँ

"चॉस खेल" द्वारा एक आईएफएस का निर्माण (एनिमेटेड)
आईएफएस को दो फ़ंक्शनों के साथ बनाया जा रहा है।

हचिंसन ने दिखाया कि पूर्ण फ़ंक्शन या अधिक सामान्यतः पूर्ण फ़ंक्शन के लिए फ़ंक्शनों के सिस्टम में एक अद्वितीय गैर-रिक्त सघन निश्चित समूह S होता है।[3] एक सघन निश्चित समूह के निर्माण को प्रारंभिक गैर-रिक्त समूह S0 से प्रारम्भ करना और Fi की क्रियाओं को दोहराना, Sn+1 को Fi के अंतर्गत की छवियों का संघ माना जाता है तब S को की एक टोपोलॉजी मान लिया जाता है। प्रतीकात्मक रूप से अद्वितीय निश्चित गैर-रिक्त समूह में गुण है:

इस प्रकार के माध्यम से परिभाषित हचिंसन संक्रियक का निश्चित समूह है:

S का अस्तित्व और विशिष्टता संकुचन मानचित्रण सिद्धांत का परिणाम है, जैसा कि निम्न है:

में किसी भी गैर-रिक्त समूह के लिए (संविदात्मक आईएफएस के लिए यह अभिसरण किसी भी गैर-रिक्त सीमा वाले समूह के लिए भी होता है) अपेक्षाकृत रूप से S के निकट यादृच्छिक तत्व नीचे वर्णित "चॉस खेल" द्वारा प्राप्त किए जा सकते हैं।

हाल ही में यह दिखाया गया था कि गैर-संकुचित प्रकार के आईएफएस (अर्थात उन मानचित्रों से बने होते हैं जो में किसी भी टोपोलॉजिकल समतुल्य समूह के संबंध में संकुचित नहीं हैं) आकर्षित करने वाले परिणाम दे सकते हैं। ये प्रक्षेप्य संरचना में स्वाभाविक रूप से उत्पन्न होते हैं। हालाँकि वृत्त पर प्राथमिक अपरिमेय संख्या को भी परिवर्तित कर सकते हैं।[4]

फ़ंक्शन समूह संरचना के अंतर्गत एक मोनोइड उत्पन्न करता है। यदि ऐसे केवल दो फ़ंक्शन हैं, तो मोनॉइड को एक बाइनरी ट्री के रूप में देखा जा सकता है, जहां बाइनरी ट्री के प्रत्येक नोड पर एक या दूसरे फ़ंक्शन के साथ रचना की जा सकती है अर्थात बाईं या दाईं शाखा मे सामान्यतः यदि k फ़ंक्शन हैं, तो कोई मोनॉइड को पूर्ण k ट्री के रूप में देख सकता है, जिसे "केली बाइनरी ट्री" के रूप में भी जाना जाता है।

निर्माण

बार्न्सले फ़र्न प्रारंभिक आईएफएस
मेन्जर स्पंज और 3-आयामी आईएफएस।
आईएफएस ट्री का निर्माण गैर-रेखीय फ़ंक्शन जूलिया के साथ किया गया था।
HERBO avecTige.png

कभी-कभी प्रत्येक फ़ंक्शन को सामान्यतः एफ़िन फ़ंक्शन या एक रैखिक फ़ंक्शन द्वारा दर्शाया जाना आवश्यक होता है। हालाँकि आईएफएस को गैर-रेखीय फ़ंक्शनों से भी बनाया जा सकता है, जिसमें प्रक्षेप्य परिवर्तन और रैखिक परिवर्तन सम्मिलित हैं। फ्रेक्टल संपीड़न लौ गैर-रेखीय फ़ंक्शनों वाले आईएफएस फ़ंक्शन का एक उदाहरण हैं।

फ्रेक्टल संपीड़न की गणना करने के लिए सबसे सामान्य एल्गोरिथम को "चॉस खेल" कहा जाता है। इसमें समतल में एक यादृच्छिक बिंदु को चुनना, फिर अगले बिंदु को प्राप्त करने के लिए बिंदु को परिवर्तित करना फ़ंक्शन सिस्टम से यादृच्छिक रूप से चुने गए फ़ंक्शनों में से एक को पुनरावृत्त करना सम्मिलित है। एक वैकल्पिक एल्गोरिथम किसी दी गई अधिकतम लंबाई तक फ़ंक्शनों के प्रत्येक संभावित अनुक्रम को उत्पन्न करता है और फिर फ़ंक्शनों के इन अनुक्रमों में से प्रत्येक को प्रारंभिक बिंदु या आकार पर प्रयुक्त करने के परिणामों को निश्चित करता है। इनमें से प्रत्येक एल्गोरिथम एक वैश्विक निर्माण प्रदान करता है जो पूरे फ्रेक्टल संपीड़न में वितरित अंक उत्पन्न करता है। यदि फ्रेक्टल संपीड़न का एक छोटा क्षेत्र खींचा जा रहा है, तो इनमें से कई बिंदु स्क्रीन की सीमाओं से बाहर हो जाएंगे। इससे इस प्रकार से तैयार किए गए आईएफएस निर्माण में ज़ूम करना अस्पष्ट हो जाता है। आईएफएस को प्रयुक्त करने वाले सॉफ़्टवेयर के लिए केवल यह आवश्यक है कि संपूर्ण सिस्टम औसतन प्रयोगिक हो।[5] हालाँकि आईएफएस के सिद्धांत के अनुसार प्रत्येक फ़ंक्शन को प्रयोगिक होना आवश्यक होता है।

विभाजित पुनरावृत्त फ़ंक्शन सिस्टम

पीआईएफएस (विभाजित पुनरावृत्त फ़ंक्शन सिस्टम), जिसे स्थानीय पुनरावृत्त फ़ंक्शन सिस्टम भी कहा जाता है।[6] सामान्यतः यह अच्छी छवि संपीड़न देता है, यहां तक ​​​​कि उन छवियों के लिए भी जिनमें सरल फ्रेक्टल संपीड़न द्वारा दिखाए गए स्व-समान संरचना के प्रकार प्रदर्शित नहीं होते हैं।[7]

व्युत्क्रम समस्या

आईएफएस या पीआईएफएस मापदंडों के समूह से एक छवि उत्पन्न करने के लिए कई तीव्र एल्गोरिथम सम्मिलित हैं। इसे कैसे बनाया गया है इसका विवरण संग्रहीत करने, उस विवरण को गंतव्य डिवाइस पर प्रसारित करने और छवि में प्रत्येक पिक्सेल के रंग को संग्रहीत करने और प्रसारित करने की तुलना में उस छवि को गंतव्य डिवाइस पर नए रूप मे पुन: उत्पन्न करने के लिए बहुत कम संग्रहण भंडारण की आवश्यकता होती है।[6]

व्युत्क्रम समस्या अधिक कठिन है कुछ मूल डिजिटल छवियों जैसे डिजिटल फोटोग्राफ को देखते हुए, आईएफएस पैरामीटर के समूह को खोजने का प्रयास करें, जो पुनरावृत्ति द्वारा मूल्यांकन किए जाने पर, मूल छवियों के समान एक और छवि उत्पन्न करता है। 1989 में अरनॉड जैक्विन ने केवल पीआईएफएस का उपयोग करके व्युत्क्रम समस्या के एक प्रतिबंधित रूप का समाधान प्रस्तुत किया था जो व्युत्क्रम समस्या का सामान्य रूप अस्पष्ट उदाहरण है।[8][9][6] 1995 तक सभी फ्रेक्टल संपीड़न सॉफ़्टवेयर जैक्विन के दृष्टिकोण पर आधारित थे।[9]

उदाहरण

आरेख दो एफ़िन फंक्शन से आईएफएस पर निर्माण दिखाता है। आरेख को द्वि-इकाई वर्ग पर उनके प्रभाव द्वारा दर्शाया जाता है आरेख उल्लिखित वर्ग को छायांकित वर्ग में परिवर्तित कर देता है। दो आरेखों का संयोजन हचिंसन ऑपरेटर बनाता है। ऑपरेटर के तीन पुनरावृत्तियों को दिखाया गया है और फिर अंतिम छवि निश्चित बिंदु, अंतिम फ्रेक्टल संपीड़न है।

फ्रेक्टल संपीड़न के प्रारम्भिक उदाहरण जो आईएफएस द्वारा उत्पन्न किए जा सकते हैं उनमें कैंटर समूह सम्मिलित है, जिसे पहली बार 1884 में वर्णित किया गया था। डी राम वक्र एक प्रकार का स्व-समान वक्र है, जिसे 1957 में गेर्जेस डी. रहम रैम द्वारा वर्णित किया गया था।

इतिहास

आईएफएस की वर्तमान स्वरूप में कल्पना 1981 में जॉन ई. हचिंसन द्वारा की गई थी और माइकल बार्न्सले की पुस्तक फ्रेक्टल संपीड़न एवरीव्हेयर द्वारा प्रस्तुत की गई थी।[3]

आईएफएस कुछ पौधों, पत्तियों और फ़र्न के लिए मॉडल प्रदान करते हैं, आत्म-समानता के आधार पर जो प्रायः प्रकृति में शाखाओं वाली संरचनाओं में होती है।

— माइकल बार्न्सले[10]

यह भी देखें

टिप्पणियाँ

  1. Zobrist, George Winston; Chaman Sabharwal (1992). Progress in Computer Graphics: Volume 1. Intellect Books. p. 135. ISBN 9780893916510. Retrieved 7 May 2017.
  2. Michael Barnsley (1988). Fractals Everywhere, p.82. Academic Press, Inc. ISBN 9780120790623.
  3. 3.0 3.1 Hutchinson, John E. (1981). "भग्न और स्व समानता" (PDF). Indiana Univ. Math. J. 30 (5): 713–747. doi:10.1512/iumj.1981.30.30055.
  4. M. Barnsley, A. Vince, The Chaos Game on a General Iterated Function System
  5. Draves, Scott; Erik Reckase (July 2007). "फ्रैक्टल फ्लेम एल्गोरिथम" (PDF). Archived from the original (PDF) on 2008-05-09. Retrieved 2008-07-17.
  6. 6.0 6.1 6.2 Bruno Lacroix. "Fractal Image Compression". 1998.
  7. Fischer, Yuval (1992-08-12). Przemyslaw Prusinkiewicz (ed.). SIGGRAPH'92 course notes - Fractal Image Compression (PDF). SIGGRAPH. Vol. Fractals - From Folk Art to Hyperreality. ACM SIGGRAPH. Archived from the original (PDF) on 2017-09-12. Retrieved 2017-06-30.
  8. Dietmar Saupe, Raouf Hamzaoui. "A Review of the Fractal Image Compression Literature".
  9. 9.0 9.1 John Kominek. "Algorithm for Fast Fractal Image Compression". doi:10.1117/12.206368.
  10. माइकल बार्न्सले"V-variable fractals and superfractals" (PDF). (2.22 MB)


संदर्भ


बाहरी संबंध