क्वांटम यांत्रिकी में, विशेष रूप से क्वांटम सूचना सिद्धांत में, तद्रूपता(फिडेलिटी) दो क्वांटम अवस्थाओं की "निकटता" की एक माप है। यह संभावना व्यक्त करता है कि एक अवस्था दूसरे के रूप में पहचाने जाने के लिए एक परीक्षण उत्तीर्ण करेगा। तद्रूपता घनत्व मैट्रिक्स के स्थान पर एक मीट्रिक नहीं है, लेकिन इसका उपयोग इस स्थान पर ब्यूर्स मीट्रिक को परिभाषित करने के लिए किया जा सकता है।
दो घनत्व ऑपरेटरों और को देखते हुए, तद्रूपता को प्रायः मात्रा के रूप में परिभाषित किया जाता है। विशेष स्थिति में जहां और शुद्ध क्वांटम अवस्थाओं का प्रतिनिधित्व करते हैं, अर्थात्, और , परिभाषा अवस्थाओं के बीच वर्ग ओवरलैप को कम करती है: । यदि दोनों में से कम से कम एक अवस्था शुद्ध है तो यह कम हो जाती है:( ), जहां शुद्ध अवस्था है। जबकि सामान्य परिभाषा से यह स्पष्ट नहीं है, तद्रूपता सममित है: ।
दो यादृच्छिक चर को मान (श्रेणीबद्ध यादृच्छिक चर) और संभावनाओं और के साथ देखते हुए, और की तद्रूपता को मात्रा के रूप में परिभाषित किया गया है
.
तद्रूपता यादृच्छिक चर के सीमांत वितरण से संबंधित है। यह उन चरों के संयुक्त वितरण के बारे में कुछ नहीं कहता है। दूसरे शब्दों में, तद्रूपता यूक्लिडियन समष्टि में वैक्टर के रूप में देखे गए और के आंतरिक उत्पाद का वर्ग है। ध्यान दें कि यदि और केवल यदि है। सामान्य रूप में, है। मापभट्टाचार्य गुणांक के रूप में जाना जाता है।
दो संभाव्यता वितरणों की भिन्नता के चिरप्रतिष्ठित माप को देखते हुए, कोई दो क्वांटम अवस्थाओं की भिन्नता के माप को निम्नानुसार प्रेरित कर सकता है। यदि कोई प्रयोगकर्ता यह निर्धारित करने का प्रयास कर रहा है कि क्या क्वांटम अवस्था दो संभावनाओं या में से एक है, तो वे अवस्था पर वे जो सबसे सामान्य संभावित माप कर सकते हैं वह एक पीओवीएम है, जिसे हर्मिटियनधनात्मक अर्धनिश्चितऑपरेटरों के एक समुच्चय द्वारा वर्णित किया गया है। यदि प्रयोगकर्ता को दी गई स्थिति है, वे परिणाम को संभाव्यता के साथ देखेंगे, और इसी तरह के लिए संभाव्यता के साथ के साथ देखेंगे। क्वांटम अवस्थाओं और के बीच अंतर करने की उनकी क्षमता चिरप्रतिष्ठित संभाव्यता वितरण और के बीच अंतर करने की उनकी क्षमता के बराबर है। स्वाभाविक रूप से, प्रयोगकर्ता सबसे अच्छा पीओवीएम चुनेंगे जो वे पा सकते हैं, इसलिए यह सभी संभावित पीओवीएम पर चरम होने पर वर्ग भट्टाचार्य गुणांक के रूप में क्वांटम तद्रूपता को परिभाषित करने के लिए प्रेरित करता है:
फुच्स और केव्स द्वारा यह दिखाया गया कि यह स्पष्ट रूप से सममित परिभाषा अगले भाग में दिए गए सरल असममित सूत्र के बराबर है।[1]
परिभाषा
दो घनत्व मैट्रिक्स ρ और σ दिए जाने पर, तद्रूपता को परिभाषित किया गया है[2]
जहां, एक धनात्मक अर्धनिश्चित मैट्रिक्स के लिए, इसके अद्वितीय धनात्मक वर्गमूल को दर्शाता है, जैसा कि वर्णक्रमीय प्रमेय द्वारा दिया गया है। चिरप्रतिष्ठित परिभाषा से यूक्लिडियन आंतरिक उत्पाद को हिल्बर्ट-श्मिट आंतरिक उत्पाद द्वारा प्रतिस्थापित किया गया है।
क्वांटम अवस्था तद्रूपता के कुछ महत्वपूर्ण गुण हैं:
समरूपता. .
परिबद्ध मान. किसी भी और के लिए , और है।
संभाव्यता वितरणों के बीच तद्रूपता के साथ संगति. यदि और अंतर्वतन करते हैं,, तो परिभाषा सरल हो जाती है
जहां के क्रमशः के अभिलक्षणिक मान हैं। इसे देखने के लिए याद रखें कि यदि तो उन्हें उसी आधार पर विकर्णीय किया जा सकता है:
इसलिए
शुद्ध अवस्थाओं के लिए सरलीकृत अभिव्यक्तियाँ. यदि शुद्ध है, , तब है। यह
से अनुसरण करता है।
यदि दोनों और शुद्ध हैं, तो और तब है। यह उपरोक्त अभिव्यक्ति का तुरंत अनुसरण करता है।
समतुल्य अभिव्यक्ति.
ट्रेस मानदंड का उपयोग करके तद्रूपता के लिए एक समकक्ष अभिव्यक्ति लिखी जा सकती है
जहां एक ऑपरेटर का निरपेक्ष मान यहां के रूप में परिभाषित किया गया है।
क्यूबिटस् के लिए स्पष्ट अभिव्यक्ति.
यदि और दोनों क्यूबिट अवस्थाएँ हैं, तो तद्रूपता की गणना इस प्रकार की जा सकती है[2][3]
क्यूबिट अवस्था का अर्थ है कि और द्वि-आयामी मैट्रिक्स द्वारा दर्शाया गया है। यह परिणाम इस बात पर ध्यान देता है कि एक धनात्मक अर्धनिश्चित ऑपरेटर है, इसलिए , जहां और , के (गैरनकारात्मक) अभिलक्षणिक मान हैं। यदि (या ) शुद्ध है, इस परिणाम को तक सरलीकृत किया जाता है क्योंकि शुद्ध अवस्था के लिए होता है।
वैकल्पिक परिभाषा
कुछ लेखक वैकल्पिक परिभाषा का उपयोग करते हैं और इस मात्रा को तद्रूपता कहते हैं।[4] हालाँकि की परिभाषा अधिक सामान्य है।[5][6][7] भ्रम की स्थिति से बचने के लिए को ''वर्गमूल तद्रूपता'' कहा जा सकता है। किसी भी स्थिति में यह सलाह दी जाती है कि जब भी तद्रूपता का प्रयोग किया जाए तो अपनाई गई परिभाषा को स्पष्ट किया जाए।
हमने देखा कि दो शुद्ध अवस्थाओं के लिए, उनकी तद्रूपता ओवरलैप के साथ मेल खाती है। उहल्मन का प्रमेय[8] इस कथन को मिश्रित अवस्थाओं में उनकी शुद्धि के संदर्भ में सामान्यीकृत किया गया है:
प्रमेय मान लीजिए कि ρ और σ C पर कार्य करने वाले घनत्व आव्यूह हैंn. चलो आर1⁄2 ρ और का अद्वितीय धनात्मक वर्गमूल हो
ρ की क्वांटम अवस्था का शुद्धिकरण हो (इसलिए एक लंबात्मक आधार है), तो निम्नलिखित समानता कायम है:
कहाँ σ का शुद्धिकरण है। इसलिए, सामान्य तौर पर, शुद्धि के बीच तद्रूपता अधिकतम ओवरलैप है।
प्रमाण का रेखाचित्र
एक साधारण प्रमाण को इस प्रकार रेखांकित किया जा सकता है। होने देना वेक्टर को निरूपित करें
और पी1⁄2 σ का अद्वितीय धनात्मक वर्गमूल हो। हम देखते हैं कि, मैट्रिक्स गुणनखंडन में एकात्मक स्वतंत्रता और ऑर्थोनॉर्मल आधार चुनने के कारण, σ का एक मनमाना शुद्धिकरण रूप का होता है
जहां वीiएकात्मक संचालिका हैं। अब हम सीधे हिसाब लगाते हैं
लेकिन सामान्य तौर पर, किसी भी वर्ग मैट्रिक्स ए और एकात्मक यू के लिए, यह सच है कि |tr(AU)| ≤ tr((ए*ए)1⁄2). इसके अलावा, समानता तब प्राप्त होती है जब यू*ए के ध्रुवीय अपघटन में एकात्मक संचालिका है। इससे सीधे उहल्मन की प्रमेय का अनुसरण होता है।
स्पष्ट विघटन के साथ प्रमाण
हम यहां उहल्मन के प्रमेय को साबित करने के लिए एक वैकल्पिक, स्पष्ट तरीका प्रदान करेंगे।
होने देना और की शुद्धि हो और , क्रमश। आरंभ करने के लिए, आइए हम उसे दिखाएं .
अवस्थाओं की शुद्धि का सामान्य रूप है:
थे के आइजन्वेक्टर हैं , और मनमाना ऑर्थोनॉर्मल आधार हैं। शुद्धि के बीच ओवरलैप है
जहां एकात्मक मैट्रिक्स परिभाषित किया जाता है
अब असमानता का उपयोग करके निष्कर्ष पर पहुंचा गया है :
ध्यान दें कि यह असमानता मैट्रिक्स के एकल मानों पर लागू त्रिकोण असमानता है। दरअसल, एक सामान्य मैट्रिक्स के लिए और एकात्मक , अपने पास
कहाँ के (हमेशा वास्तविक और गैर-नकारात्मक) एकवचन मान हैं , जैसा कि एकवचन मूल्य अपघटन में होता है। असमानता संतृप्त हो जाती है और जब समानता बन जाती है , तभी और इस तरह . उपरोक्त यह दर्शाता है जब शुद्धि और ऐसे हैं . चूँकि यह विकल्प अवस्थाओं की परवाह किए बिना संभव है, हम अंततः यह निष्कर्ष निकाल सकते हैं
परिणाम
उहलमैन के प्रमेय के कुछ तात्कालिक परिणाम हैं
तद्रूपता अपने तर्कों में सममित है, अर्थात F (ρ,σ) = F (σ,ρ)। ध्यान दें कि यह मूल परिभाषा से स्पष्ट नहीं है।
एफ (ρ,σ) कॉची-श्वार्ज़ असमानता द्वारा [0,1] में निहित है।
एफ (ρ,σ) = 1 यदि और केवल यदि ρ = σ, चूँकि Ψρ = पी.एसσ तात्पर्य ρ = σ.
तो हम देख सकते हैं कि तद्रूपता लगभग एक मीट्रिक की तरह व्यवहार करती है। इसे परिभाषित करके औपचारिक एवं उपयोगी बनाया जा सकता है
अवस्थाओं के बीच के कोण के रूप में और . उपरोक्त गुणों से यह निष्कर्ष निकलता है कि गैर-नकारात्मक है, अपने इनपुट में सममित है, और यदि और केवल यदि शून्य के बराबर है . इसके अलावा, यह सिद्ध किया जा सकता है कि यह त्रिभुज असमानता का पालन करता है,[4]इसलिए यह कोण अवस्था स्थान पर एक मीट्रिक है: फ़ुबिनी-अध्ययन मीट्रिक।[9]
संगत संभाव्यता वितरण के बीच तद्रूपता के साथ संबंध
होने देना एक मनमाना POVM|धनात्मक ऑपरेटर-मूल्य माप (POVM) बनें; अर्थात्, धनात्मक अर्धनिश्चित ऑपरेटरों का एक सेट संतुष्टि देने वाला . फिर, अवस्थाओं के किसी भी जोड़े के लिए और , अपने पास
जहां अंतिम चरण में हमने संकेत दिया था और मापने के द्वारा प्राप्त संभाव्यता वितरण POVM के साथ .
इससे पता चलता है कि दो क्वांटम अवस्थाओं के बीच तद्रूपता का वर्गमूल किसी भी संभावित POVM में संबंधित संभाव्यता वितरण के बीच भट्टाचार्य गुणांक द्वारा ऊपरी सीमा पर है। वास्तव में, यह अधिक सामान्यतः सत्य है
कहाँ , और सभी संभावित POVMs पर न्यूनतम लिया जाता है। अधिक विशेष रूप से, कोई यह साबित कर सकता है कि ऑपरेटर के ईजेनबेस में माप के अनुरूप प्रोजेक्टिव POVM द्वारा न्यूनतम प्राप्त किया जाता है .[10]
असमानता का प्रमाण
जैसा कि पहले दिखाया गया था, तद्रूपता का वर्गमूल इस प्रकार लिखा जा सकता है जो एकात्मक संचालक के अस्तित्व के बराबर है ऐसा है कि
वो याद आ रहा है यह किसी भी POVM के लिए सत्य है, फिर हम लिख सकते हैं
जहां अंतिम चरण में हमने कॉची-श्वार्ज़ असमानता का उपयोग किया था .
क्वांटम संचालन के तहत व्यवहार
यह दिखाया जा सकता है कि गैर-चयनात्मक क्वांटम ऑपरेशन के दौरान दो अवस्थाओं के बीच तद्रूपता कभी कम नहीं होती अवस्थाओं पर लागू होता है:[11]
हम मैट्रिक्स मानदंड के संदर्भ में दो मैट्रिक्स ए और बी के बीच ट्रेस दूरी को परिभाषित कर सकते हैं
जब ए और बी दोनों घनत्व ऑपरेटर हैं, तो यह सांख्यिकीय दूरी का एक क्वांटम सामान्यीकरण है। यह प्रासंगिक है क्योंकि ट्रेस दूरी फुच्स-वैन डे ग्रेफ असमानताओं द्वारा निर्धारित तद्रूपता पर ऊपरी और निचली सीमाएं प्रदान करती है,[12]
अक्सर ट्रेस दूरी की गणना करना या तद्रूपता की तुलना में इसे बांधना आसान होता है, इसलिए ये रिश्ते काफी उपयोगी होते हैं। इस स्थिति में कि कम से कम एक अवस्था शुद्ध अवस्था Ψ है, निचली सीमा को कड़ा किया जा सकता है।
↑Bengtsson, Ingemar (2017). Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge, United Kingdom New York, NY: Cambridge University Press. ISBN978-1-107-02625-4.
↑Walls, D. F.; Milburn, G. J. (2008). क्वांटम ऑप्टिक्स. Berlin: Springer. ISBN978-3-540-28573-1.
↑Jaeger, Gregg (2007). Quantum Information: An Overview. New York London: Springer. ISBN978-0-387-35725-6.
↑C. A. Fuchs and J. van de Graaf, "Cryptographic Distinguishability Measures for Quantum Mechanical States", IEEE Trans. Inf. Theory 45, 1216 (1999). arXiv:quant-ph/9712042