औपचारिक रूप से वास्तविक क्षेत्र
गणित में, विशेष रूप से क्षेत्र सिद्धांत (गणित) और वास्तविक बीजगणितीय ज्यामिति में, औपचारिक रूप से वास्तविक क्षेत्र एक ऐसा क्षेत्र है जिसे एक (जरूरी नहीं कि अद्वितीय हो) क्रम से सुसज्जित किया जा सकता है जो इसे एक क्रमित क्षेत्र बनाता है।
वैकल्पिक परिभाषाएँ
ऊपर दी गई परिभाषा प्रथम-क्रम तर्क की परिभाषा नहीं है, क्योंकि इसमें सेट (गणित) पर क्वांटिफायर की आवश्यकता होती है। हालाँकि, निम्नलिखित मानदंडों को फ़ील्ड की भाषा में (अनंत रूप से कई) प्रथम-क्रम वाक्य (गणितीय तर्क) के रूप में कोडित किया जा सकता है और उपरोक्त परिभाषा के बराबर हैं।
औपचारिक रूप से वास्तविक फ़ील्ड F एक ऐसा फ़ील्ड है जो निम्नलिखित समकक्ष गुणों में से एक को भी संतुष्ट करता है:[1][2]
- −1, F में वर्ग संख्या का योग नहीं है। दूसरे शब्दों में, F का मान (बीजगणित) अनंत है। (विशेष रूप से, ऐसे क्षेत्र में विशेषता (बीजगणित) 0 होनी चाहिए, क्योंकि विशेषता पी के क्षेत्र में तत्व -1, 1 का योग है।) इसे प्रथम-क्रम तर्क में प्रत्येक चर संख्या के लिए एक वाक्य के साथ , आदि द्वारा व्यक्त किया जा सकता है।
- F का एक तत्व मौजूद है जो F में वर्गों का योग नहीं है, और F की विशेषता 2 नहीं है।
- यदि F के तत्वों के वर्गों का कोई भी योग शून्य के बराबर है, तो उनमें से प्रत्येक तत्व शून्य होता है।
यह देखना आसान है कि ये तीन गुण समतुल्य हैं। यह देखना भी आसान है कि एक क्षेत्र जो ऑर्डरिंग स्वीकार करता है उसे इन तीन गुणों को पूरा करना होता है।
एक प्रमाण कि यदि F इन तीन गुणों को संतुष्ट करता है, तो F एक आदेश स्वीकार करता है जो पूर्वसकारात्मक शंकु और धनात्मक शंकु की धारणा का उपयोग करता है। मान लीजिए -1 वर्गों का योग नहीं है; फिर ज़ोर्न के लेम्मा तर्क से पता चलता है कि वर्गों के योग के पूर्वसकारात्मक शंकु को एक सकारात्मक शंकु P ⊆ F तक बढ़ाया जा सकता है। कोई इस सकारात्मक शंकु का उपयोग क्रम को परिभाषित करने के लिए करता है: a ≤ b यदि और केवल यदि b − a, P से संबंधित है।
वास्तविक बंद फ़ील्ड
औपचारिक रूप से वास्तविक उचित बीजीय विस्तार के बिना एक औपचारिक रूप से वास्तविक क्षेत्र एक वास्तविक बंद क्षेत्र है।[3] यदि K औपचारिक रूप से वास्तविक है और Ω K युक्त एक बीजगणितीय रूप से बंद फ़ील्ड है, तो K युक्त Ω का एक वास्तविक बंद उपक्षेत्र है। एक वास्तविक बंद फ़ील्ड को एक अनूठे तरीके से व्यवस्थित किया जा सकता है, [3] और गैर-नकारात्मक तत्व बिल्कुल वर्ग हैं।
टिप्पणियाँ
संदर्भ
- Milnor, John; Husemoller, Dale (1973). Symmetric bilinear forms. Springer. ISBN 3-540-06009-X.
- Rajwade, A. R. (1993). Squares. London Mathematical Society Lecture Note Series. Vol. 171. Cambridge University Press. ISBN 0-521-42668-5. Zbl 0785.11022.