पॉकेट सेट सिद्धांत
पॉकेट सेट सिद्धांत (पीएसटी) एक वैकल्पिक सेट सिद्धांत है जिसमें केवल दो अपरिमित कार्डिनल संख्याएं ℵ0 (एलेफ़-नॉट, सभी प्राकृतिक संख्याओं के सेट का गणनांक) और c (सातत्य का गणनांक) हैं। इस सिद्धांत का सुझाव सर्वप्रथम रूडी रूकर ने अपनी इन्फिनिटी एंड द माइंड में दिया था।[1] इस प्रविष्टि में दिए गए विवरण अमेरिकी गणितज्ञ रान्डेल एम. होम्स की देन हैं।
पीएसटी का समर्थन करने वाले तर्क
पीएसटी जैसे न्यूनतम सेट सिद्धांत के पक्ष में कम से कम दो स्वतंत्र तर्क हैं।
- समुच्चय सिद्धांत के बाहर गणितीय अभ्यास से कोई यह धारणा प्राप्त कर सकता है कि "केवल दो अपरिमित कार्डिनल हैं जो स्पष्ट रूप से 'श्रेणी में होते हैं' (प्राकृतिक संख्याओं के गणनांक और सातत्य के गणनांक)",[2]इसलिए "समुच्चय सिद्धांत चिरसम्मत गणित का समर्थन करने के लिए आवश्यक से कहीं अधिक अधिरचना का उत्पादन करता है।"[3] यद्यपि यह अतिशयोक्ति हो सकती है (कोई ऐसी स्थिति में आ सकता है जिसमें किसी को वास्तविक संख्याओं या वास्तविक फलनों के यादृच्छिक समुच्चय के विषय में विचार विमर्श करना पड़ता है) कुछ तकनीकी युक्तियों के साथ[4] गणित के एक विशाल भाग को पीएसटी के भीतर पुनर्निर्मित किया जा सकता है; निश्चित रूप से इसके अधिकांश समुपयोग के लिए पर्याप्त है।
- द्वितीय तर्क मूलभूत विचारों से उत्पन्न होता है। अधिकांश गणित को मानक समुच्चय सिद्धांत या इसके बड़े विकल्पों में से एक विकल्प में प्रयुक्त किया जा सकता है। दूसरी ओर, समुच्चय सिद्धांतों को एक तार्किक प्रणाली के संदर्भ में प्रस्तुत किया जाता है; अधिकांश मामलों में यह प्रथम कोटि तर्क है। दूसरी ओर, प्रथम-कोटि तर्क का वाक्यविन्यास और शब्दार्थ सेट-सैद्धांतिक आधार पर बनाया गया है। इस प्रकार, एक मूलभूत वृत्ताकारता है, जो हमें बूटस्ट्रैपिंग के लिए यथासंभव अशक्त सिद्धांत का चयन करने के लिए विवश करती है।
इस प्रकार, यह सोचने के कारण हैं कि कैंटर का असमापिकाओं का अनंत पदानुक्रम अनावश्यक है। पॉकेट सेट सिद्धांत एक "न्यूनतम" समुच्चय सिद्धांत है जो केवल दो अपरिमित (मानक) प्राकृतिक संख्याओं के गणनांक और (मानक) वास्तविकताओं की गणनांक (मानक) की अनुमति देता है।
सिद्धांत
पीएसटी सर्वसमिका और द्विआधारी संबंध प्रतीक के साथ मानक प्रथम-कोटि भाषा का उपयोग करता है। साधारण चर बड़ा अक्षर X, Y आदि हैं। अभीष्ट व्याख्या में, ये चर वर्ग (सेट सिद्धांत) के लिए हैं तथा परमाणु सूत्र का अर्थ है "वर्ग X, वर्ग Y का एक तत्व है"। समुच्चय एक वर्ग है जो वर्ग का एक तत्व है। छोटे केस वेरिएबल x, y, आदि समुच्चय के लिए हैं। एक उचित वर्ग वह वर्ग है जो समुच्चय नहीं है। दो वर्ग समसंख्य हैं यदि उनके मध्य एक द्विअंतथक्षेपण उपस्थित है। एक वर्ग अपरिमित है यदि वह अपने उचित उपवर्गों में से एक के साथ समतुल्य है। पीएसटी के सिद्धांत हैं
- '(A1)' (विस्तारात्मकता) - जिन वर्गों में समान तत्व होते हैं वे समान होते हैं।
- (A2) (वर्ग बोध) - यदि एक सूत्र है तो एक वर्ग उपस्थित है जिसके तत्व यथार्थत: वे समुच्चय x हैं जो को संतुष्ट करते हैं।
- (A3) (अपरिमित सिद्धांत) - एक अपरिमित समुच्चय है और सभी अपरिमित समुच्चय समसंख्यक हैं।
- (inf(x) का अर्थ है "x परिमित है"; संक्षेप में प्रदर्शित करता है कि x, y के समान है।)
- '(A4)' (आकार की सीमा) - एक वर्ग तभी उचित वर्ग होता है जब वह सभी उचित वर्गों के साथ समतुल्य हो।
- (pr(X) का अर्थ है "X एक उचित वर्ग है"।)
सिद्धांतों पर टिप्पणियाँ
- हालाँकि वर्गों और समुच्चयों के लिए विभिन्न प्रकार के चर का उपयोग किया जाता है, फिर भी भाषा अधिक वर्गीकृत नहीं होती है; समुच्चय की पहचान समान एक्सटेंशन वाले वर्गों से की जाती है। छोटे केस चरों का उपयोग विभिन्न संदर्भों के लिए मात्र अक्षरों के संक्षिप्त रूप में किया जाता है; जैसे,
- चूँकि A2 में परिमाणीकरण वर्गों के आधार पर भिन्न-भिन्न होता है, अर्थात्, सेट-बाउंड नहीं है, A2 मोर्स-केली सेट सिद्धांत की समझ योजना है, न कि वॉन न्यूमैन-बर्नेज़-गोडेल सेट सिद्धांत की। A2 की यह अतिरिक्त गुण ऑर्डिनल्स की परिभाषा में नियोजित है (यहां प्रस्तुत नहीं है)।
- चूँकि युग्म का कोई स्वयंसिद्ध सिद्धांत नहीं है, इसलिए यह सिद्ध किया जाना चाहिए कि किन्हीं दो समुच्चयों x और y के लिए कुराटोस्की युग्म {{x},{x,y}} उपस्थित है तथा एक समुच्चय है। इसलिए यह सिद्ध करना कि दो वर्गों के मध्य प्रत्येक के लिए अलग अलग समानता उपस्थित है इससे यह सिद्ध नहीं होता है कि वे समसंख्यक हैं।
- पॉकेट सेट सिद्धांत तीसरे क्रम के अंकगणित के अनुरूप है जिसमें प्राकृतिक संख्याओं के उपसमुच्चय और प्राकृतिक संख्याओं के पावरसेट के उपसमुच्चय के समरूपी समुच्चय और वर्ग होते हैं।
- पॉकेट सेट सिद्धांत के लिए एक मॉडल पॉकेट सेट सिद्धांत के सेट को HC के रचनात्मक तत्व (आनुवंशिक रूप से गणनीय सेट का सेट) और वर्गों को HC के रचनात्मक उपसमुच्चय के रूप में लेते हुए दिया गया है।
कुछ पीएसटी प्रमेय
- 1. रसेल वर्ग एक उचित वर्ग है। ()
- प्रमाण: रसेल के विरोधाभास द्वारा समुच्चय नहीं हो सकता। ∎
- 2. रिक्त वर्ग एक समुच्चय है। ()
- प्रमाण: मान लीजिए (प्रतिवाद की ओर) कि एक उचित वर्ग है। (A4) के अनुसार, को के समान होना चाहिए जिस स्थिति में रिक्त है। मान लीजिए i एक अपरिमित समुच्चय है और वर्ग पर विचार करें। यह , के समतुल्य नहीं है इसलिए यह एक समुच्चय है। यह सीमित है किन्तु इसका एक तत्व अपरिमित है इसलिए यह स्वयं का एक तत्व नहीं हो सकता। इसलिए, यह का एक तत्व है। यह इस बात का खंडन करता है कि रिक्त है। ∎
- 3. एकल वर्ग समुच्चय है।
- प्रमाण: मान लीजिए कि एक उचित वर्ग है। फिर (A4) द्वारा प्रत्येक उचित वर्ग एक एकल है। माना कि i एक अनंत समुच्चय है और वर्ग पर विचार करें। यह न तो एक उचित वर्ग है (क्योंकि यह एकल नहीं है) और न ही स्वयं का एक तत्व है (क्योंकि यह न तो रिक्त है और न ही अपरिमित है)। इस प्रकार की परिभाषा यह है कि में कम से कम दो तत्व और हैं। यह प्रारंभिक धारणा का खंडन करता है कि उचित वर्ग एकल हैं। ∎
- 4. अपरिमित है।
- प्रमाण: मान लीजिए । मान लीजिए कि यह वर्ग एक समुच्चय है। तत्पश्चात या । प्रथम स्थिति में की परिभाषा का तात्पर्य यह है कि जिससे यह निष्कर्ष निकलता है कि एक प्रतिवाद है। द्वितीय स्थिति में की परिभाषा या तो को दर्शाती है और इसलिए ,एक प्रतिवाद या है। किन्तु रिक्त नहीं हो सकता क्योंकि इसमें कम से कम एक तत्व है। ∎
- 5. प्रत्येक परिमित वर्ग एक समुच्चय है।
- प्रमाण: माना कि X एक उचित वर्ग है। (ए4) द्वारा, एक मौजूद है इस प्रकार कि F एक आक्षेप है। इसमें एक जोड़ी शामिल है , और प्रत्येक सदस्य आर के लिए , एक जोड़ी . होने देना और . (ए4) के अनुसार, ये दोनों वर्ग मौजूद हैं। अब, एक आक्षेप है. इस प्रकार (A4), एक उचित वर्ग भी है. स्पष्ट रूप से, और . अब, (ए4) का एक अन्य अनुप्रयोग दर्शाता है कि एक आपत्ति मौजूद है . इससे सिद्ध होता है कि X अनंत है। ∎
एक बार उपरोक्त तथ्य तय हो जाने पर निम्नलिखित परिणाम सिद्ध किये जा सकते हैं:
- 6. समुच्चय () के वर्ग V में सभी अनुवांशिक गणनीय समुच्चय सम्मिलित हैं।
- 7. प्रत्येक उचित वर्ग में गणनांक होता है।
- प्रमाण: मान लीजिए कि i एक अपरिमित समुच्चय है, ऐसी स्थिति में वर्ग का गणनांक हैं। (A4) के अनुसार, सभी उचित वर्गों में गणनांक होता है। ∎
- 8. समुच्चय का संघ वर्ग समुच्चय है।
पीएसटी यह भी सत्यापित करता है:
- सातत्य परिकल्पना. यह ऊपर (5) और (6) से अनुसरण करता है;
- प्रतिस्थापन का सिद्धांत. यह (ए4) का परिणाम है;
- पसंद का सिद्धांत. सबूत। सभी अध्यादेशों का वर्ग ऑर्ड परिभाषा के अनुसार सुव्यवस्थित है। क्रमशः बुराली-फोर्टी विरोधाभास और कैंटर विरोधाभास के कारण सभी सेटों के ऑर्ड और वर्ग वी दोनों उचित वर्ग हैं। इसलिए वी और ऑर्ड के बीच एक आपत्ति मौजूद है, जो वी को अच्छी तरह से व्यवस्थित करती है। ∎
पीएसटी में सभी सेटों की सुदृढता न तो साबित करने योग्य है और न ही अस्वीकार्य है।
संभावित विस्तार
- 'पीएसटी' में मुक्त निर्माण के तथाकथित स्वयंसिद्ध को जोड़ने पर, सेट-सैद्धांतिक स्वयंसिद्धों की किसी भी सुसंगत प्रणाली के परिणामस्वरूप प्रणाली में एक आंतरिक मॉडल होगा।
- यह 'पीएसटी' की एक अमित्र विशेषता है कि यह वास्तविक संख्याओं के सेटों की कक्षाओं या वास्तविक कार्यों के सेटों की कक्षाओं को संभाल नहीं सकता है। हालाँकि, यह कोई जरूरी नहीं है. (ए3) को सातत्य परिकल्पना के समर्थन के साथ या उसके बिना, अनंत के सामान्य पदानुक्रम के विभिन्न भागों की अनुमति देने के लिए विभिन्न तरीकों से संशोधित किया जा सकता है। एक उदाहरण है
- इस संस्करण में, एक अनंत सेट की कार्डिनैलिटी या तो है या , और एक उचित वर्ग की प्रमुखता है (जिसका अर्थ है कि सामान्यीकृत सातत्य परिकल्पना कायम है)।
यह भी देखें
टिप्पणियाँ
- ↑ Rucker, Rudy, Infinity and the Mind, Princeton UP, 1995, p.253.
- ↑ Pocket Set Theory, p.8.[full citation needed]
- ↑ Alternative Set Theories, p.35.
- ↑ See Pocket Set Theory, p.8. on encoding.
संदर्भ
- Holmes, Randall (2006), "Alternative Set Theories", Stanford Encyclopedia of Philosophy, Metaphysics Research Lab, Stanford University