चक्रीय समरूपता
गैर-अनुवांशिक ज्यामिति और गणित की संबंधित शाखाओं में, चक्रीय समरूपता और चक्रीय समरूपता साहचर्य बीजगणित के लिए निश्चित (सह) समरूपता सिद्धांत हैं जो मैनिफोल्ड्स के डी राम सह समरूपता को सामान्यीकृत करते हैं। इन धारणाओं को स्वतंत्र रूप से बोरिस त्स्यगन (होमोलॉजी) द्वारा प्रस्तुत किया गया था[1] और एलेन कोन्स (कोहोमोलॉजी)[2] उन्नीस सौ अस्सी के दशक में। इन अपरिवर्तनीयों के गणित की कई पुरानी शाखाओं के साथ कई दिलचस्प संबंध हैं, जिनमें डी राम सिद्धांत, होशचाइल्ड (सह) समरूपता, समूह सह समरूपता और के-सिद्धांत शामिल हैं। सिद्धांत के विकास में योगदानकर्ताओं में मैक्स करौबी, यूरी एल. डेलेत्स्की, बोरिस फागिन, जीन-ल्यूक ब्रिलिंस्की, मारियस वोड्ज़िकी, जीन लुई लोडे, विक्टर निस्टर, डेनियल क्विलेन, जोआचिम कुंत्ज़, रिस्ज़र्ड नेस्ट, राल्फ़ मेयर और माइकल पुश्निग्ग शामिल हैं। .
परिभाषा के बारे में संकेत
विशेषता (बीजगणित) शून्य के क्षेत्र पर रिंग ए की चक्रीय समरूपता की पहली परिभाषा, निरूपित
- एचसीn(ए) या एचnλ(ए),
ए के होशचाइल्ड होमोलॉजी से संबंधित निम्नलिखित स्पष्ट श्रृंखला कॉम्प्लेक्स के माध्यम से आगे बढ़ा, जिसे 'श्रृंखला जटिल' कहा जाता है:
किसी भी प्राकृतिक संख्या n ≥ 0 के लिए, संकारक को परिभाषित करें जो की प्राकृतिक चक्रीय क्रिया उत्पन्न करता है ए के एन-वें टेंसर उत्पाद पर:
याद रखें कि ए के होशचाइल्ड जटिल समूह ए में गुणांक के साथ सेटिंग द्वारा दिए गए हैं सभी n ≥ 0 के लिए। फिर कॉन्स कॉम्प्लेक्स के घटकों को इस प्रकार परिभाषित किया गया है , और अंतर इस भागफल के लिए होशचाइल्ड अंतर का प्रतिबंध है। कोई यह जांच सकता है कि होशचाइल्ड अंतर वास्तव में संयोग के इस स्थान को प्रभावित करता है। [3] कॉन्स ने बाद में एबेलियन श्रेणी में चक्रीय वस्तु की धारणा का उपयोग करके चक्रीय समरूपता के लिए एक अधिक स्पष्ट दृष्टिकोण पाया, जो सरल वस्तु की धारणा के अनुरूप है। इस तरह, चक्रीय होमोलॉजी (और कोहोमोलॉजी) की व्याख्या एक व्युत्पन्न फ़ंक्टर के रूप में की जा सकती है, जिसे स्पष्ट रूप से (बी, बी)-बाइकॉम्प्लेक्स के माध्यम से गणना की जा सकती है। यदि फ़ील्ड k में तर्कसंगत संख्याएं शामिल हैं, तो कॉन्स कॉम्प्लेक्स के संदर्भ में परिभाषा समान समरूपता की गणना करती है।
चक्रीय समरूपता की एक उल्लेखनीय विशेषता एक सटीक अनुक्रम#लंबे सटीक अनुक्रम को जोड़ने का अस्तित्व है होशचाइल्ड और चक्रीय समरूपता। इस लंबे सटीक अनुक्रम को आवधिकता अनुक्रम कहा जाता है।
क्रमविनिमेय वलय का मामला
गुणात्मक शून्य के क्षेत्र k पर एक एफ़िन बीजगणितीय विविधता पर नियमित कार्यों के क्रमविनिमेय बीजगणित ए की चक्रीय सह-समरूपता की गणना ग्रोथेंडिक के क्रिस्टलीय सह-समरूपता के संदर्भ में की जा सकती है।[4] विशेष रूप से, यदि विविधता V=स्पेक A चिकनी है, तो A की चक्रीय सहसंयोजीता को V की डी राम सहसंयोजी के रूप में इस प्रकार व्यक्त किया जाता है:
यह सूत्र एक गैर-अनुवांशिक बीजगणित ए के 'गैर-अनुवांशिक स्पेक्ट्रम' के लिए डी राम कोहोमोलॉजी को परिभाषित करने का एक तरीका सुझाता है, जिसे कॉन्स द्वारा बड़े पैमाने पर विकसित किया गया था।
चक्रीय समरूपता के प्रकार
चक्रीय समरूपता की एक प्रेरणा K-सिद्धांत के एक सन्निकटन की आवश्यकता थी जिसे K-सिद्धांत के विपरीत, एक श्रृंखला परिसर की समरूपता के रूप में परिभाषित किया गया है। चक्रीय कोहोलॉजी वास्तव में के-सिद्धांत के साथ एक जोड़ी के साथ संपन्न है, और एक उम्मीद है कि यह जोड़ी गैर-पतित होगी।
ऐसे कई प्रकार परिभाषित किए गए हैं जिनका उद्देश्य टोपोलॉजी के साथ बीजगणित के साथ बेहतर ढंग से फिट होना है, जैसे फ़्रेचेट बीजगणित, -बीजगणित, आदि। इसका कारण यह है कि के-सिद्धांत अतिरिक्त संरचना के बिना बीजगणित की तुलना में बानाच बीजगणित या सी*-बीजगणित जैसे टोपोलॉजिकल बीजगणित पर बहुत बेहतर व्यवहार करता है। चूँकि, दूसरी ओर, C*-बीजगणित पर चक्रीय समरूपता का ह्रास होता है, इसलिए संशोधित सिद्धांतों को परिभाषित करने की आवश्यकता उत्पन्न हुई। इनमें एलेन कोन्स के कारण संपूर्ण चक्रीय समरूपता, राल्फ़ मेयर के कारण विश्लेषणात्मक चक्रीय समरूपता शामिल हैं।[5] या माइकल पुश्निग्ग के कारण स्पर्शोन्मुख और स्थानीय चक्रीय समरूपता।[6] आखिरी वाला के-सिद्धांत के बहुत करीब है क्योंकि यह केके-सिद्धांत के द्विवेरिएंट चेर्न चरित्र से संपन्न है।
अनुप्रयोग
चक्रीय समरूपता के अनुप्रयोगों में से एक अतियाह-सिंगर सूचकांक प्रमेय के नए प्रमाण और सामान्यीकरण खोजना है। इन सामान्यीकरणों में वर्णक्रमीय त्रिगुणों पर आधारित सूचकांक प्रमेय हैं[7] और पॉइसन मैनिफ़ोल्ड का विरूपण परिमाणीकरण।[8] कॉम्पैक्ट स्मूथ मैनिफोल्ड पर एक अण्डाकार ऑपरेटर डी, के होमोलॉजी में एक वर्ग को परिभाषित करता है। इस वर्ग का एक अपरिवर्तनीय ऑपरेटर का विश्लेषणात्मक सूचकांक है। इसे एचसी(सी(एम)) में तत्व 1 के साथ वर्ग [डी] की जोड़ी के रूप में देखा जाता है। चक्रीय कोहोलॉजी को न केवल चिकनी मैनिफोल्ड्स के लिए, बल्कि गैर-अनुवांशिक ज्यामिति में दिखाई देने वाले पत्ते, कक्षीय मोड़ और एकवचन रिक्त स्थान के लिए अण्डाकार अंतर ऑपरेटरों के उच्च अपरिवर्तनीयता प्राप्त करने के एक तरीके के रूप में देखा जा सकता है।
बीजगणितीय K-सिद्धांत की गणना
साइक्लोटोमिक ट्रेस मानचित्र बीजगणितीय के-सिद्धांत (एक रिंग ए, मान लीजिए) से लेकर चक्रीय होमोलॉजी तक का एक मानचित्र है:
कुछ स्थितियों में, इस मानचित्र का उपयोग इस मानचित्र के माध्यम से K-सिद्धांत की गणना करने के लिए किया जा सकता है। इस दिशा में एक अग्रणी परिणाम एक प्रमेय है Goodwillie (1986): यह दावा करता है कि नक्शा
एक निलपोटेंट दो-तरफा आदर्श I के संबंध में A के सापेक्ष K-सिद्धांत के बीच सापेक्ष चक्रीय समरूपता (A और A/I के K-सिद्धांत या चक्रीय समरूपता के बीच अंतर को मापना) n≥1 के लिए एक समरूपता है।
जबकि गुडविली का परिणाम मनमाने छल्ले के लिए है, एक त्वरित कमी से पता चलता है कि यह संक्षेप में केवल एक बयान है . उन रिंगों के लिए जिनमें Q नहीं है, K-सिद्धांत के साथ घनिष्ठ संबंध बनाए रखने के लिए चक्रीय होमोलॉजी को टोपोलॉजिकल चक्रीय होमोलॉजी द्वारा प्रतिस्थापित किया जाना चाहिए। (यदि क्यू ए में समाहित है, तो चक्रीय होमोलॉजी और ए की टोपोलॉजिकल चक्रीय होमोलॉजी सहमत हैं।) यह इस तथ्य के अनुरूप है कि (शास्त्रीय) होशचाइल्ड होमोलॉजी, टोपोलॉजिकल होशचाइल्ड होमोलॉजी की तुलना में कम अच्छा व्यवहार करती है। उन छल्लों के लिए जिनमें Q नहीं है। Clausen, Mathew & Morrow (2018) गुडविली के परिणाम का एक दूरगामी सामान्यीकरण साबित हुआ, जिसमें कहा गया कि एक क्रमविनिमेय रिंग ए के लिए ताकि हेन्सेलियन अंगूठी आदर्श I के संबंध में बनी रहे, सापेक्ष K-सिद्धांत सापेक्ष टोपोलॉजिकल चक्रीय होमोलॉजी के लिए आइसोमोर्फिक है ('क्यू के साथ दोनों को टेंसर किए बिना) '). उनके परिणाम में एक प्रमेय भी शामिल है Gabber (1992), यह दावा करते हुए कि इस स्थिति में सापेक्ष K-सिद्धांत स्पेक्ट्रम मॉड्यूल एक पूर्णांक n जो A में उलटा है गायब हो जाता है। Jardine (1993) परिमित क्षेत्रों के K-सिद्धांत की क्विलेन की गणना को गलत ठहराने के लिए गैबर के परिणाम और सुस्लिन कठोरता का उपयोग किया।
यह भी देखें
- नॉनकम्यूटेटिव ज्योमेट्री
टिप्पणियाँ
- ↑ Boris L. Tsygan. Homology of matrix Lie algebras over rings and the Hochschild homology. Uspekhi Mat. Nauk, 38(2(230)):217–218, 1983. Translation in Russ. Math. Survey 38(2) (1983), 198–199.
- ↑ Alain Connes. Noncommutative differential geometry. Inst. Hautes Études Sci. Publ. Math., 62:257–360, 1985.
- ↑ Jean-Louis Loday. Cyclic Homology. Vol. 301. Springer Science & Business Media, 1997.
- ↑ Boris L. Fegin and Boris L. Tsygan. Additive K-theory and crystalline cohomology. Funktsional. Anal. i Prilozhen., 19(2):52–62, 96, 1985.
- ↑ Ralf Meyer. Analytic cyclic cohomology. PhD thesis, Universität Münster, 1999
- ↑ Michael Puschnigg. Diffeotopy functors of ind-algebras and local cyclic cohomology. Doc. Math., 8:143–245 (electronic), 2003.
- ↑ Alain Connes and Henri Moscovici. The local index formula in noncommutative geometry. Geom. Funct. Anal., 5(2):174–243, 1995.
- ↑ Ryszard Nest and Boris Tsygan. Algebraic index theorem. Comm. Math. Phys., 172(2):223–262, 1995.
संदर्भ
- Jardine, J. F. (1993), "The K-theory of finite fields, revisited", K-Theory, 7 (6): 579–595, doi:10.1007/BF00961219, MR 1268594
- Loday, Jean-Louis (1998), Cyclic Homology, Grundlehren der mathematischen Wissenschaften, vol. 301, Springer, ISBN 978-3-540-63074-6
- Gabber, Ofer (1992), "K-theory of Henselian local rings and Henselian pairs", Algebraic K-theory, commutative algebra, and algebraic geometry (Santa Margherita Ligure, 1989), Contemp. Math., vol. 126, AMS, pp. 59–70
- Clausen, Dustin; Mathew, Akhil; Morrow, Matthew (2018), "K-theory and topological cyclic homology of henselian pairs", arXiv:1803.10897 [math.KT]
- Goodwillie, Thomas G. (1986), "Relative algebraic K-theory and cyclic homology", Annals of Mathematics, Second Series, 124 (2): 347–402, doi:10.2307/1971283, JSTOR 1971283, MR 0855300
- Rosenberg, Jonathan (1994), Algebraic K-theory and its applications, Graduate Texts in Mathematics, vol. 147, Berlin, New York: Springer-Verlag, ISBN 978-0-387-94248-3, MR 1282290, Zbl 0801.19001. Errata