कोहोमोलोजी रिंग
गणित में, विशेष रूप से बीजगणितीय टोपोलॉजी में, टोपोलॉजिकल स्पेस एक्स की सह-समरूपता रिंग एक रिंग (गणित) है जो एक्स के कोहोमोलॉजी समूहों से मिलकर कप उत्पाद के साथ रिंग गुणन के रूप में बनती है। यहां 'कोहोमोलॉजी' को आमतौर पर एकवचन कोहोमोलॉजी के रूप में समझा जाता है, लेकिन एकवचन सहसंरचना अन्य सिद्धांतों जैसे डॉ कहलमज गर्भाशय में भी मौजूद है। यह कार्यात्मक भी है: रिक्त स्थान के निरंतर मानचित्रण के लिए कोहॉमोलॉजी रिंगों पर एक वलय समरूपता प्राप्त होता है, जो विरोधाभासी है।
विशेष रूप से, कोहोमोलोजी समूहों एच का अनुक्रम दिया गया हैk(X;R) क्रमविनिमेय रिंग R में गुणांक के साथ X पर (आमतौर पर R 'Z' है)n, Z, Q, R, या C) कोई कप उत्पाद को परिभाषित कर सकता है, जो रूप लेता है
कप उत्पाद कोहोमोलॉजी समूहों के मॉड्यूल के प्रत्यक्ष योग पर गुणन देता है
यह गुणन H हो जाता है•(X;R) एक रिंग में। वास्तव में, यह स्वाभाविक रूप से एक 'एन'-वर्गीकृत अंगूठी है जिसमें गैर-नकारात्मक पूर्णांक k डिग्री के रूप में कार्य करता है। कप उत्पाद इस ग्रेडिंग का सम्मान करता है।
कोहॉमोलॉजी रिंग इस अर्थ में ग्रेडेड-कम्यूटेटिव है कि कप उत्पाद ग्रेडिंग द्वारा निर्धारित संकेत तक पहुंचता है। विशेष रूप से, डिग्री k और ℓ के शुद्ध तत्वों के लिए; अपने पास
कोहोमोलॉजी रिंग से प्राप्त एक संख्यात्मक अपरिवर्तनीय कप-लंबाई है, जिसका अर्थ है डिग्री ≥ 1 के वर्गीकृत तत्वों की अधिकतम संख्या जिसे गुणा करने पर गैर-शून्य परिणाम मिलता है। उदाहरण के लिए एक जटिल प्रक्षेप्य स्थान की कप-लंबाई उसके जटिल आयाम के बराबर होती है।
उदाहरण
- कहाँ .
- कहाँ .
- कहाँ .
- कहाँ .
- कहाँ .
- कहाँ .
- कुनेथ सूत्र के अनुसार, एन प्रतियों के कार्टेशियन उत्पाद की मॉड 2 कोहोमोलॉजी रिंग गुणांकों के साथ n चरों में एक बहुपद वलय है .
- वेज सम्स का घटा हुआ कोहोमोलॉजी रिंग उनके कम किए गए कोहोमोलॉजी रिंग का प्रत्यक्ष उत्पाद है।
- डिग्री 0 भाग को छोड़कर निलंबन की कोहोमोलॉजी रिंग गायब हो जाती है।
यह भी देखें
संदर्भ
- Novikov, S. P. (1996). Topology I, General Survey. Springer-Verlag. ISBN 7-03-016673-6.
- Hatcher, Allen (2002), Algebraic Topology, Cambridge: Cambridge University Press, ISBN 0-521-79540-0.