फ़ील्ड लाइन

From Vigyanwiki
Revision as of 18:25, 8 July 2023 by alpha>Indicwiki (Created page with "{{short description|Visual aid to depiction of a vector field}} {{about|the modern use of "field lines" as a way to depict electromagnetic and other vector fields|the role of...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
क्षेत्र रेखाएं धनात्मक आवेश (बाएं), ऋणात्मक आवेश (केंद्र) और अनावेशित वस्तु (दाएं) द्वारा निर्मित विद्युत क्षेत्र को दर्शाती हैं।

फ़ील्ड लाइन वेक्टर फ़ील्ड को देखने के लिए एक ग्राफिकल वैज्ञानिक विज़ुअलाइज़ेशन है। इसमें एक काल्पनिक अभिन्न वक्र होता है जो क्षेत्र के यूक्लिडियन वेक्टर की लंबाई के साथ प्रत्येक बिंदु पर स्पर्शरेखा होता है।[1][2] पड़ोसी क्षेत्र रेखाओं के प्रतिनिधि सेट को दर्शाने वाला आरेख वैज्ञानिक और गणितीय साहित्य में एक वेक्टर क्षेत्र को चित्रित करने का एक सामान्य तरीका है; इसे फ़ील्ड रेखा आरेख कहा जाता है। इनका उपयोग कई अन्य प्रकारों के अलावा विद्युत क्षेत्र, चुंबकीय क्षेत्र और गुरुत्वाकर्षण क्षेत्र दिखाने के लिए किया जाता है। द्रव यांत्रिकी में द्रव प्रवाह के वेग क्षेत्र को दर्शाने वाली क्षेत्र रेखाओं को स्ट्रीमलाइन, स्ट्रीकलाइन और पथहीनता कहा जाता है।

परिभाषा और विवरण

बाईं ओर का चित्र दो समान धनात्मक आवेशों की विद्युत क्षेत्र रेखाओं को दर्शाता है। दाईं ओर का चित्र विपरीत चिह्न के दो समान आवेशों की विद्युत क्षेत्र रेखाओं को दर्शाता है।

एक सदिश क्षेत्र अंतरिक्ष में प्रत्येक बिंदु पर एक दिशा और परिमाण को परिभाषित करता है। एक फ़ील्ड लाइन उस वेक्टर फ़ील्ड के लिए एक अभिन्न वक्र है और इसका निर्माण एक बिंदु से शुरू करके और अंतरिक्ष के माध्यम से एक रेखा का पता लगाकर किया जा सकता है जो वेक्टर फ़ील्ड की दिशा का अनुसरण करती है, प्रत्येक बिंदु पर फ़ील्ड लाइन को फ़ील्ड वेक्टर की स्पर्शरेखा रेखा बनाकर।[3][2][1] फ़ील्ड रेखा को आमतौर पर एक निर्देशित रेखा खंड के रूप में दिखाया जाता है, जिसमें एक तीर का सिरा वेक्टर फ़ील्ड की दिशा को दर्शाता है। द्वि-आयामी क्षेत्रों के लिए क्षेत्र रेखाएँ समतल वक्र हैं; चूँकि फ़ील्ड रेखाओं के 3-आयामी सेट का समतल चित्रण दृष्टिगत रूप से भ्रमित करने वाला हो सकता है, अधिकांश फ़ील्ड लाइन आरेख इसी प्रकार के होते हैं। चूंकि प्रत्येक बिंदु पर जहां यह शून्येतर और परिमित है, वेक्टर क्षेत्र की एक अद्वितीय दिशा होती है, क्षेत्र रेखाएं कभी भी प्रतिच्छेद नहीं कर सकती हैं, इसलिए प्रत्येक बिंदु से होकर गुजरने वाली बिल्कुल एक क्षेत्र रेखा होती है, जहां पर वेक्टर क्षेत्र शून्येतर और परिमित होता है।[3][2] वे बिंदु जहां क्षेत्र शून्य या अनंत है, उनके माध्यम से कोई क्षेत्र रेखा नहीं है, क्योंकि वहां दिशा परिभाषित नहीं की जा सकती है, लेकिन क्षेत्र रेखाओं के अंतिम बिंदु हो सकते हैं।

चूँकि किसी भी क्षेत्र में अनंत संख्या में बिंदु होते हैं, इसलिए अनंत संख्या में क्षेत्र रेखाएँ खींची जा सकती हैं; लेकिन फ़ील्ड लाइन आरेख पर केवल एक सीमित संख्या ही दिखाई जा सकती है। इसलिए कौन सी फ़ील्ड रेखाएँ दिखायी जाती हैं यह उस व्यक्ति या कंप्यूटर प्रोग्राम द्वारा चुना जाता है जो आरेख बनाता है, और एक एकल वेक्टर फ़ील्ड को फ़ील्ड लाइनों के विभिन्न सेटों द्वारा दर्शाया जा सकता है। एक फ़ील्ड लाइन आरेख आवश्यक रूप से एक वेक्टर फ़ील्ड का अधूरा विवरण है, क्योंकि यह खींची गई फ़ील्ड रेखाओं के बीच के क्षेत्र के बारे में कोई जानकारी नहीं देता है, और कितनी और कौन सी रेखाएँ दिखानी हैं इसका विकल्प यह निर्धारित करता है कि आरेख कितनी उपयोगी जानकारी देता है।

एक व्यक्तिगत क्षेत्र रेखा सदिश क्षेत्र की दिशा तो दिखाती है लेकिन परिमाण नहीं। क्षेत्र के परिमाण को दर्शाने के लिए, क्षेत्र रेखा आरेख अक्सर खींचे जाते हैं ताकि प्रत्येक रेखा समान मात्रा में प्रवाह का प्रतिनिधित्व करे। फिर किसी भी स्थान पर क्षेत्र रेखाओं का घनत्व (प्रति इकाई लंबवत क्षेत्र में क्षेत्र रेखाओं की संख्या) उस बिंदु पर वेक्टर क्षेत्र के परिमाण के समानुपाती होता है। जिन क्षेत्रों में पड़ोसी क्षेत्र रेखाएं एकत्रित हो रही हैं (एक दूसरे के करीब आ रही हैं) यह इंगित करती हैं कि क्षेत्र उस दिशा में मजबूत हो रहा है।

ऐसे वेक्टर फ़ील्ड में जिनमें शून्येतर विचलन होता है, फ़ील्ड रेखाएँ सकारात्मक विचलन (स्रोतों) के बिंदुओं पर शुरू होती हैं और नकारात्मक विचलन (सिंक) के बिंदुओं पर समाप्त होती हैं, या अनंत तक विस्तारित होती हैं। उदाहरण के लिए, विद्युत क्षेत्र रेखाएँ धनात्मक विद्युत आवेश पर शुरू होती हैं और ऋणात्मक आवेश पर समाप्त होती हैं। ऐसे क्षेत्र जो अपसरण रहित (सोलेनॉइडल ) होते हैं, जैसे चुंबकीय क्षेत्र, क्षेत्र रेखाओं का कोई समापन बिंदु नहीं होता है; वे या तो बंद लूप हैं या अंतहीन हैं।[4][5] भौतिकी में, फ़ील्ड रेखाओं के चित्र मुख्य रूप से उन मामलों में उपयोगी होते हैं जहां स्रोत और सिंक, यदि कोई हों, का भौतिक अर्थ होता है, उदाहरण के लिए विपरीत। बर्ट्रेंड के प्रमेय#रेडियल हार्मोनिक ऑसिलेटर के बल क्षेत्र का मामला। उदाहरण के लिए, गॉस का नियम कहता है कि एक विद्युत क्षेत्र के स्रोत धनात्मक विद्युत आवेश पर होते हैं, ऋणात्मक आवेश पर डूबते हैं, और न ही कहीं और, इसलिए विद्युत क्षेत्र रेखाएँ धनात्मक आवेश पर शुरू होती हैं और ऋणात्मक आवेश पर समाप्त होती हैं। गुरुत्वाकर्षण क्षेत्र का कोई स्रोत नहीं होता है, इसमें द्रव्यमान पर सिंक होते हैं, और न ही कहीं और, गुरुत्वाकर्षण क्षेत्र रेखाएं अनंत से आती हैं और द्रव्यमान पर समाप्त होती हैं। एक चुंबकीय क्षेत्र में कोई स्रोत या सिंक नहीं होता है (चुंबकत्व के लिए गॉस का नियम), इसलिए इसकी क्षेत्र रेखाओं का कोई प्रारंभ या अंत नहीं होता है: वे केवल बंद लूप बना सकते हैं, दोनों दिशाओं में अनंत तक विस्तारित हो सकते हैं, या खुद को पार किए बिना अनिश्चित काल तक जारी रख सकते हैं। हालाँकि, जैसा कि ऊपर कहा गया है, उन बिंदुओं के आसपास एक विशेष स्थिति उत्पन्न हो सकती है जहां क्षेत्र शून्य है (जिसे क्षेत्र रेखाओं द्वारा प्रतिच्छेद नहीं किया जा सकता है, क्योंकि उनकी दिशा परिभाषित नहीं की जाएगी) और क्षेत्र रेखाओं का प्रारंभ और अंत एक साथ होता है। उदाहरण के लिए, यह स्थिति दो समान धनात्मक विद्युत बिंदु आवेशों के मध्य में घटित होती है। वहां, क्षेत्र गायब हो जाता है और आवेशों से अक्षीय रूप से आने वाली रेखाएं समाप्त हो जाती हैं। उसी समय, मध्य बिंदु से गुजरने वाले अनुप्रस्थ तल में, अनंत संख्या में क्षेत्र रेखाएं रेडियल रूप से विसरित होती हैं। समाप्त होने वाली और शुरू होने वाली रेखाओं की सहवर्ती उपस्थिति बिंदु में क्षेत्र के विचलन-मुक्त चरित्र को संरक्षित करती है।[5]

ध्यान दें कि इस प्रकार की ड्राइंग के लिए, जहां क्षेत्र-रेखा घनत्व का उद्देश्य क्षेत्र परिमाण के समानुपाती होना है, सभी तीन आयामों का प्रतिनिधित्व करना महत्वपूर्ण है। उदाहरण के लिए, एकल, पृथक बिंदु आवेश से उत्पन्न होने वाले विद्युत क्षेत्र पर विचार करें। इस मामले में विद्युत क्षेत्र रेखाएं सीधी रेखाएं हैं जो त्रि-आयामी अंतरिक्ष में सभी दिशाओं में समान रूप से चार्ज से निकलती हैं। इसका मतलब है कि उनका घनत्व आनुपातिक है , इस मामले के लिए कूलम्ब के नियम के अनुरूप सही परिणाम। हालाँकि, यदि इस सेटअप के लिए विद्युत क्षेत्र रेखाएँ केवल द्वि-आयामी तल पर खींची जाती हैं, तो उनका द्वि-आयामी घनत्व आनुपातिक होगा , इस स्थिति के लिए एक गलत परिणाम।[6]


निर्माण

फ़ील्ड लाइन का निर्माण

एक वेक्टर फ़ील्ड दिया गया है और एक प्रारंभिक बिंदु उस बिंदु पर फ़ील्ड वेक्टर ढूंढकर फ़ील्ड लाइन को पुनरावर्ती रूप से बनाया जा सकता है . उस बिंदु पर इकाई स्पर्शरेखा वेक्टर है: . थोड़ी दूर चलकर फ़ील्ड दिशा के साथ लाइन पर एक नया बिंदु पाया जा सकता है

फिर उस बिंदु पर फ़ील्ड मिल जाता है और आगे की दूरी तक बढ़ जाता है उस दिशा में अगला बिंदु फ़ील्ड लाइन पाई जाती है. प्रत्येक बिंदु पर अगला बिंदु इसके द्वारा पाया जा सकता है
इसे दोहराकर और बिंदुओं को जोड़कर क्षेत्र रेखा को इच्छानुसार दूर तक बढ़ाया जा सकता है। यह केवल वास्तविक क्षेत्र रेखा का एक अनुमान है, क्योंकि प्रत्येक सीधा खंड वास्तव में अपनी लंबाई के साथ क्षेत्र की स्पर्शरेखा नहीं है, केवल अपने शुरुआती बिंदु पर है। लेकिन इसके लिए पर्याप्त छोटे मूल्य का उपयोग करके , अधिक संख्या में छोटे कदम उठाते हुए, फ़ील्ड लाइन को इच्छानुसार करीब से अनुमानित किया जा सकता है। फ़ील्ड लाइन को विपरीत दिशा में बढ़ाया जा सकता है एक नकारात्मक कदम का उपयोग करके प्रत्येक कदम को विपरीत दिशा में उठाकर .

उदाहरण

चुंबक के क्षेत्र को चित्रित करने के विभिन्न तरीके।

यदि सदिश क्षेत्र वेग वेग क्षेत्र का वर्णन करता है, तो क्षेत्र रेखाएं प्रवाह में धारा रेखाओं का अनुसरण करती हैं। शायद क्षेत्र रेखाओं द्वारा वर्णित वेक्टर क्षेत्र का सबसे परिचित उदाहरण चुंबकीय क्षेत्र है, जिसे अक्सर चुंबक से निकलने वाली क्षेत्र रेखाओं का उपयोग करके दर्शाया जाता है।

विचलन और कर्ल

वेक्टर कलन से परिचित मात्राओं का पता लगाने के लिए फ़ील्ड लाइनों का उपयोग किया जा सकता है:

  • क्षेत्र रेखाओं के माध्यम से विचलन को आसानी से देखा जा सकता है, यह मानते हुए कि रेखाएँ इस प्रकार खींची गई हैं कि क्षेत्र रेखाओं का घनत्व क्षेत्र के परिमाण के समानुपाती हो (ऊपर देखें)। इस मामले में, विचलन को फ़ील्ड लाइनों की शुरुआत और समाप्ति के रूप में देखा जा सकता है। यदि वेक्टर क्षेत्र एक या अधिक स्रोतों के संबंध में रेडियल व्युत्क्रम-वर्ग कानून क्षेत्रों का परिणाम है तो यह इस तथ्य से मेल खाता है कि ऐसे क्षेत्र का विचलन स्रोतों के बाहर शून्य है। एक परिनालिका सदिश क्षेत्र में (अर्थात, एक सदिश क्षेत्र जहां हर जगह विचलन शून्य है), क्षेत्र रेखाएं न तो शुरू होती हैं और न ही समाप्त होती हैं; वे या तो बंद लूप बनाते हैं, या दोनों दिशाओं में अनंत तक चले जाते हैं। यदि किसी सदिश क्षेत्र में किसी क्षेत्र में सकारात्मक विचलन है, तो उस क्षेत्र में बिंदुओं से शुरू होने वाली क्षेत्र रेखाएँ होंगी। यदि किसी सदिश क्षेत्र में किसी क्षेत्र में ऋणात्मक विचलन है, तो उस क्षेत्र में बिंदुओं पर समाप्त होने वाली क्षेत्र रेखाएँ होंगी।
  • केल्विन-स्टोक्स प्रमेय से पता चलता है कि शून्य कर्ल (गणित) (यानी, एक रूढ़िवादी वेक्टर क्षेत्र, उदाहरण के लिए एक गुरुत्वाकर्षण क्षेत्र # शास्त्रीय यांत्रिकी या एक इलेक्ट्रोस्टैटिक क्षेत्र में) के साथ एक वेक्टर क्षेत्र की क्षेत्र रेखाएं बंद लूप नहीं हो सकती हैं। दूसरे शब्दों में, जब फ़ील्ड लाइन एक बंद लूप बनाती है तो कर्ल हमेशा मौजूद होता है। यह अन्य स्थितियों में भी मौजूद हो सकता है, जैसे फ़ील्ड रेखाओं का कुंडलित वक्रता आकार।

भौतिक महत्व

जब बेतरतीब ढंग से गिराया जाता है (जैसा कि यहां शेकर के साथ होता है), तो लोहे का बुरादा खुद को व्यवस्थित करता है ताकि लगभग कुछ चुंबकीय क्षेत्र रेखाओं को चित्रित किया जा सके। चुंबकीय क्षेत्र कांच की सतह के नीचे एक स्थायी चुंबक द्वारा निर्मित होता है।

हालाँकि फ़ील्ड रेखाएँ एक मात्र गणितीय निर्माण हैं, कुछ परिस्थितियों में वे भौतिक महत्व ले लेती हैं। द्रव यांत्रिकी में, स्थिर प्रवाह में वेग क्षेत्र रेखाएं (स्ट्रीमलाइन, स्ट्रीकलाइन और पाथलाइन) तरल पदार्थ के कणों के पथ का प्रतिनिधित्व करती हैं। प्लाज्मा भौतिकी के संदर्भ में, एक ही क्षेत्र रेखा पर मौजूद इलेक्ट्रॉन या आयन दृढ़ता से परस्पर क्रिया करते हैं, जबकि सामान्य तौर पर विभिन्न क्षेत्र रेखाओं पर कण परस्पर क्रिया नहीं करते हैं। यह वही व्यवहार है जो लोहे के बुरादे के कण चुंबकीय क्षेत्र में प्रदर्शित करते हैं।

फोटो में लोहे का बुरादा अलग-अलग क्षेत्र रेखाओं के साथ खुद को संरेखित करता हुआ प्रतीत होता है, लेकिन स्थिति अधिक जटिल है। इसे दो चरणों वाली प्रक्रिया के रूप में कल्पना करना आसान है: पहला, बुरादा चुंबकीय क्षेत्र पर समान रूप से फैला हुआ है लेकिन सभी क्षेत्र की दिशा में संरेखित है। फिर, फाइलिंग के पैमाने और लौहचुंबकीय गुणों के आधार पर वे फ़ील्ड को दोनों तरफ गीला कर देते हैं, जिससे हम जो रेखाएं देखते हैं उनके बीच स्पष्ट स्थान बन जाता है।[citation needed] निःसंदेह यहां वर्णित दो चरण एक साथ घटित होते हैं जब तक कि एक संतुलन प्राप्त नहीं हो जाता। क्योंकि फाइलिंग का आंतरिक चुंबकत्व क्षेत्र को संशोधित करता है, फाइलिंग द्वारा दिखाई गई रेखाएं मूल चुंबकीय क्षेत्र की फील्ड लाइनों का केवल एक अनुमान है। चुंबकीय क्षेत्र निरंतर होते हैं और इनमें अलग-अलग रेखाएं नहीं होती हैं।

यह भी देखें

संदर्भ

  1. 1.0 1.1 Tou, Stephen (2011). Visualization of Fields and Applications in Engineering. John Wiley and Sons. p. 64. ISBN 9780470978467.
  2. 2.0 2.1 2.2 Durrant, Alan (1996). Vectors in Physics and Engineering. CRC Press. pp. 129–130. ISBN 9780412627101.
  3. 3.0 3.1 Haus, Herman A.; Mechior, James R. (1998). "Section 2.7: Visualization of Fields and the Divergence and Curl". Electromagnetic fields and energy. Hypermedia Teaching Facility, Massachusetts Institute of Technology. Retrieved 9 November 2019.
  4. Lieberherr, Martin (6 July 2010). "पेचदार कुंडल की चुंबकीय क्षेत्र रेखाएं साधारण लूप नहीं हैं". American Journal of Physics. 78 (11): 1117–1119. Bibcode:2010AmJPh..78.1117L. doi:10.1119/1.3471233.
  5. 5.0 5.1 Zilberti, Luca (25 April 2017). "बंद चुंबकीय फ्लक्स रेखाओं की गलत धारणा". IEEE Magnetics Letters. 8: 1–5. doi:10.1109/LMAG.2017.2698038. S2CID 39584751 – via Zenodo (https://zenodo.org/record/4518772#.YCJU_WhKjIU). {{cite journal}}: External link in |via= (help)
  6. A. Wolf, S. J. Van Hook, E. R. Weeks, Electric field line diagrams don't work Am. J. Phys., Vol. 64, No. 6. (1996), pp. 714–724 DOI 10.1119/1.18237


अग्रिम पठन


बाहरी संबंध