संतति संशोधन (कॉन्टिनुइटी करेक्शन)
प्रायिकता सिद्धांत में, सतत सुधार एक ऐसा समायोजन है जो तब किया जाता है जब एक असतत प्रायिकता वितरण को निरंतर वितरण द्वारा अनुमानित किया जाता है।
उदाहरण
द्विपद
यदि एक यादृच्छिक चर, X में पैरामीटर n और p के साथ एक द्विपद वितरण है, अर्थात,
किसी भी x ∈ {0, 1, 2, ... n} के लिए यदि एनपी और एनपी(1 − पी) बड़े हैं (कभी-कभी दोनों को ≥ 5 के रूप में लिया जाता है), तो उपरोक्त संभावना अत्यधिक सीमा तक अनुमानित किया जा सकता है।
जहां Y एक सामान्य वितरण यादृच्छिक चर है जिसका अपेक्षित मान समान है और X के समान विचरण है, अर्थात, E(Y) = np और var(Y) = np(1 - p)। x में 1/2 का यह जोड़ एक सतत सुधार है।
पॉइसन
निरंतरता सुधार तब भी प्रारंभ किया जा सकता है जब पूर्णांकों पर समर्थित अन्य असतत वितरण सामान्य वितरण द्वारा अनुमानित होते हैं। उदाहरण के लिए, यदि X में अपेक्षित मान λ के साथ पॉइसन वितरण है तो X का प्रसरण भी λ है, और
यदि Y को सामान्यतः अपेक्षा और भिन्नता दोनों के साथ वितरित किया जाता है।
अनुप्रयोग
प्रायिकता वितरण फलनों का सटीक मूल्यांकन करने की क्षमता वाले सांख्यिकीय सॉफ़्टवेयर की तैयार उपलब्धता से पहले, निरंतरता सुधार ने सांख्यिकीय परिकल्पना परीक्षण के व्यावहारिक अनुप्रयोग में एक महत्वपूर्ण भूमिका निभाई थी जिसमें परीक्षण आंकड़ों का एक पृथक वितरण होता है: मानवीय गणना के लिए इसका विशेष महत्व था। इसका एक विशेष उदाहरण द्विपद परीक्षण है, जिसमें द्विपद वितरण सम्मिलित होता है,जैसे मुद्रा के बारे में जांच करना कि क्या यह निष्पक्ष है। जहां अत्यधिक सटीकता आवश्यक नहीं है, कुछ श्रेणियों के मापदंडों के लिए संगणक गणना अभी भी सरलता बनाए रखते हुए सटीकता में सुधार के लिए निरंतरता सुधार का उपयोग करने पर निर्भर हो सकती है।
यह भी देखें
- निरंतरता के लिए येट्स का सुधार
- निरंतरता सुधार के साथ विल्सन स्कोर अंतराल
संदर्भ
- Devore, Jay L., Probability and Statistics for Engineering and the Sciences, Fourth Edition, Duxbury Press, 1995.
- Feller, W., On the normal approximation to the binomial distribution, The Annals of Mathematical Statistics, Vol. 16 No. 4, Page 319–329, 1945.