लिप्सचिट्ज़ निरंतरता

From Vigyanwiki
Revision as of 15:07, 28 July 2023 by Manidh (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
लिप्सचिट्ज़ सतत फलन के लिए, दोहरा शंकु (सफ़ेद) उपस्तिथ होता है जिसके मूल को आलेख के साथ ले जाया जा सकता है, जिससे कि पूर्ण आलेख सदैव दोहरे शंकु के बाहर रहता है।

गणितीय विश्लेषण में, लिप्सचिट्ज़ निरंतरता, जिसका नाम जर्मनी के गणितज्ञ रूडोल्फ लिप्सचिट्ज़ के नाम पर रखा गया है, जिससे कि फलन (गणित) के लिए समान निरंतरता का मजबूत रूप होता है। इस प्रकार सहज रूप से, लिप्सचिट्ज़ निरंतर फलन इस बात में सीमित होता है कि यह कितनी तेजी से परिवर्तित हो सकता है। वास्तविक संख्या उपस्तिथ होती है, जैसे कि इस फलन के आलेख पर बिंदुओं की प्रत्येक जोड़ी के लिए, उन्हें जोड़ने वाली रेखा की ढलान का पूर्ण मान इससे अधिक नहीं होता है यह वास्तविक संख्या ऐसी सबसे छोटी सीमा को फलन का लिप्सचिट्ज़ स्थिरांक कहा जाता है (और यह निरंतरता के मापांक से संबंधित होती है)। उदाहरण के लिए, प्रत्येक फलन जो अंतराल पर परिभाषित होता है और यह पहले व्युत्पन्न से घिरा होता है, अतः लिप्सचिट्ज़ निरंतर होता है।[1]

विभेदक समीकरणों के सिद्धांत में, लिप्सचिट्ज़ निरंतरता पिकार्ड-लिंडेलोफ प्रमेय की केंद्रीय स्थिति होती है जो प्रारंभिक मूल्य समस्या के समाधान के अस्तित्व और विशिष्टता की गारंटी देती है। विशेष प्रकार की लिप्सचिट्ज़ निरंतरता, जिसे संकुचन मानचित्रण कहा जाता है, अतः इसका उपयोग बानाच निश्चित-बिंदु प्रमेय में किया जाता है।[2]

हमारे पास वास्तविक रेखा के सघनता गैर-तुच्छ अंतराल पर कार्यों के लिए सख्त समावेशन की निम्नलिखित श्रृंखला होती है:

निरंतर भिन्नलिप्सचिट्ज़ निरंतर-धारक निरंतर,

जहाँ . जो हमारे पास भी होता है

लिप्सचिट्ज़ निरंतरबिल्कुल निरंतरसमान रूप से निरंतर

परिभाषाएँ

सामान्यतः दो मीट्रिक स्थान (X, dX) और (Y, dY), दिए गए हैं, जहां dX समूह X पर मीट्रिक को दर्शाता है और dY समूह Y पर मीट्रिक (गणित) को दर्शाता है, अतः फलन f : XY लिप्सचिट्ज़ निरंतर कहा जाता है यदि कोई वास्तविक स्थिरांक K ≥ 0 इस प्रकार कि, X में सभी x1 और x2 के लिए,

[3]

ऐसे किसी भी K को फलन f के लिए 'लिप्सचिट्ज़ स्थिरांक' के रूप में संदर्भित किया जाता है और f को 'K-लिप्सचिट्ज़' के रूप में भी संदर्भित किया जा सकता है। इस प्रकार सबसे छोटे स्थिरांक को कभी-कभी f का (सर्वोत्तम) 'लिप्सचिट्ज़ स्थिरांक' या 'फैलाव' या 'फैलाव'[4]: p. 9, परिभाषा 1.4.1 [5][6] का कहा जाता है।[7] यदि K = 1 फलन को 'लघु मानचित्र' कहा जाता है, और यदि 0 ≤ K < 1 और f स्वयं के लिए मीट्रिक स्थान मानचित्र करता है, तब फलन को 'संकुचन मानचित्रण' कहा जाता है।

विशेष रूप से, वास्तविक-मूल्यवान फलन f: R → R को लिप्सचिट्ज़ निरंतर कहा जाता है यदि कोई धनात्मक वास्तविक स्थिरांक K उपस्तिथ होता है, जैसे कि सभी वास्तविक x1 और x2 के लिए,

इस स्थिति में, Y मानक मीट्रिक dY(y1, y2) = |y1y2|, के साथ वास्तविक संख्या 'R' का समूह होता है, और X 'R' का उपसमुच्चय होता है।

सामान्यतः, यदि x1 = x2 होता है तब असमानता (तुच्छ रूप से) संतुष्ट होती है। अन्यथा, कोई किसी फलन को लिप्सचिट्ज़ निरंतर के रूप में परिभाषित कर सकता है और केवल तभी जब कोई स्थिरांक K ≥ 0 उपस्तिथ होता है, जैसे कि सभी x1 ≠ x2 के लिए,

अनेक वास्तविक चरों के वास्तविक-मूल्यवान कार्यों के लिए, यह तभी क्रियान्वित होता है जब सभी छेदक रेखाओं के ढलानों का निरपेक्ष मान K से घिरा होता है। इस प्रकार फलन के आलेख पर बिंदु से गुजरने वाली ढलान K की रेखाओं का समूह बनाता है, जिससे कि वृत्ताकार शंकु और फलन लिप्सचिट्ज़ होता है और यदि फलन का आलेख प्रत्येक स्थान इस शंकु के पूर्ण प्रकार से बाहर होता है (आंकड़ा देखें)।

फलन को 'स्थानीय रूप से लिप्सचिट्ज़ निरंतर' कहा जाता है यदि x में प्रत्येक X के लिए x का पड़ोस (गणित) U उपस्तिथ होता है जैसे कि U तक सीमित f लिप्सचिट्ज़ निरंतर होता है। इस प्रकार समान रूप से, यदि

अधिक सामान्यतः, X पर परिभाषित फलन f को 'होल्डर निरंतर' कहा जाता है या X पर ऑर्डर α > 0 की 'होल्डर स्थिति' को संतुष्ट करने के लिए कहा जाता है यदि कोई निरंतर M ≥ 0 उपस्तिथ होता है।

X में सभी X और y के लिए कभी-कभी ऑर्डर α की धारक स्थिति को 'ऑर्डर की यूनिफ़ॉर्म लिप्सचिट्ज़ स्थिति' α > 0 भी कहा जाता है।

वास्तविक संख्या K ≥ 1 के लिए, यदि

तब f को 'K-बिलिप्सचिट्ज़' (जिसे 'K-बाई-लिप्सचिट्ज़' भी लिखा जाता है) कहा जाता है। हम कह सकते हैं कि f 'बिलिप्सचिट्ज़' या 'बाई-लिप्सचिट्ज़' होता है, इसका तात्पर्य यह होता है कि ऐसा K उपस्तिथ होता है। इस प्रकार बिलिप्सचिट्ज़ मानचित्रण इंजेक्शन फलन होता है, और वास्तव में इसकी छवि पर होमियोमोर्फिज्म होते है। इस प्रकार बिलिप्सचिट्ज़ फलन इंजेक्टिव लिप्सचिट्ज़ फलन के समान होता है जिसका उलटा फलन भी लिप्सचिट्ज़ होता है।

उदाहरण

लिप्सचिट्ज़ निरंतर कार्य जो प्रत्येक स्थान पर भिन्न होते हैं
  • फलन सभी वास्तविक संख्याओं के लिए परिभाषित लिप्सचिट्ज़ निरंतर K = 1, के साथ लिप्सचिट्ज़ निरंतर होता है, जिससे कि यह प्रत्येक स्थान पर भिन्न होता है और व्युत्पन्न का पूर्ण मान होता है जो ऊपर 1 से घिरा होता है। इस प्रकार "गुण" के अंतर्गत नीचे सूचीबद्ध पहली संपत्ति देख सकते है।
  • इसी प्रकार, साइन फलन लिप्सचिट्ज़ निरंतर होता है जिससे कि इसका व्युत्पन्न, कोसाइन फलन, पूर्ण मान में 1 से ऊपर घिरा हुआ है।
लिप्सचिट्ज़ निरंतर कार्य जो प्रत्येक स्थान पर भिन्न नहीं होते हैं
  • The function defined on the reals is Lipschitz continuous with the Lipschitz constant equal to 1, by the reverse triangle inequality. More generally, a norm on a vector space is Lipschitz continuous with respect to the associated metric, with the Lipschitz constant equal to 1.
लिप्सचिट्ज़ निरंतर कार्य जो प्रत्येक स्थान पर भिन्न होते हैं किन्तु निरंतर भिन्न नहीं होते हैं
  • The function , whose derivative exists but has an essential discontinuity at .
निरंतर कार्य जो (वैश्विक स्तर पर) लिप्सचिट्ज़ निरंतर नहीं होते हैं
  • The function f(x) = x defined on [0, 1] is not Lipschitz continuous. This function becomes infinitely steep as x approaches 0 since its derivative becomes infinite. However, it is uniformly continuous,[8] and both Hölder continuous of class C0, α for α ≤ 1/2 and also absolutely continuous on [0, 1] (both of which imply the former).
विभिन्न कार्य जो (स्थानीय रूप से) लिप्सचिट्ज़ निरंतर नहीं हैं
  • The function f defined by f(0) = 0 and f(x) = x3/2sin(1/x) for 0<x≤1 gives an example of a function that is differentiable on a compact set while not locally Lipschitz because its derivative function is not bounded. See also the first property below.
विश्लेषणात्मक कार्य जो (वैश्विक स्तर पर) लिप्सचिट्ज़ निरंतर नहीं हैं
  • The exponential function becomes arbitrarily steep as x → ∞, and therefore is not globally Lipschitz continuous, despite being an analytic function.
  • The function f(x) = x2 with domain all real numbers is not Lipschitz continuous. This function becomes arbitrarily steep as x approaches infinity. It is however locally Lipschitz continuous.

गुण

  • प्रत्येक स्थान पर भिन्न-भिन्न फलन g : RR लिप्सचिट्ज़ निरंतर होता है (K = सुपर | g′(x) | के साथ) और यदि यह पहले व्युत्पन्न से घिरा हुआ है, अतः माध्य मान प्रमेय से दिशा अनुसरण करती है। विशेष रूप से, कोई भी निरंतर भिन्न कार्य स्थानीय रूप से लिप्सचिट्ज़ होता है, जिससे कि निरंतर कार्य स्थानीय रूप से बंधे होते हैं इसलिए इसका ग्रेडिएंट भी स्थानीय रूप से बाध्य होता है।
  • लिप्सचिट्ज़ फलन g : 'R' → 'R' बिल्कुल निरंतर होता है और इसलिए लगभग प्रत्येक स्थान भिन्न होता है, अर्थात् लेब्सग्यू माप शून्य के समूह के बाहर प्रत्येक बिंदु पर भिन्न होता है। इसका व्युत्पन्न अनिवार्य रूप से लिप्सचिट्ज़ स्थिरांक द्वारा परिमाण में घिरा हुआ है, और a < b के लिए, अंतर g(b) - g(a) अंतराल [a, b] पर व्युत्पन्न g′ के अभिन्न अंग के सामान्तर होता है।
    • इसके विपरीत, यदि f : I → 'R' बिल्कुल निरंतर होता है और इस प्रकार लगभग प्रत्येक स्थान भिन्न होता है, और |f′(x)| को संतुष्ट करता है। इस प्रकार I में लगभग सभी x के लिए ≤ K, तब अधिकतम K पर लिप्सचिट्ज़ स्थिरांक के साथ f लिप्सचिट्ज़ निरंतर होता है।
    • अधिक सामान्यतः, रैडेमाकर का प्रमेय यूक्लिडियन स्थानों के मध्य लिप्सचिट्ज़ मानचित्रण के लिए भिन्नता परिणाम का विस्तार करता है। इस प्रकार लिप्सचिट्ज़ मानचित्र f : URm, जहां U, 'Rn' में खुला समूह होता है, अतः लगभग प्रत्येक स्थान व्युत्पन्न होता है। इसके अतिरिक्त, यदि K, f का सर्वश्रेष्ठ लिप्सचिट्ज़ स्थिरांक होता है, तब जब भी कुल व्युत्पन्न Df उपस्तिथ होता है।
  • भिन्न लिप्सचिट्ज़ मानचित्र के लिए असमानता सर्वोत्तम लिप्सचिट्ज़ स्थिरांक के लिए धारण करता है तब का यदि कार्यक्षेत्र वास्तव में उत्तल होता है .
  • मान लीजिए कि {fn} दो मीट्रिक स्थानों के मध्य लिप्सचिट्ज़ निरंतर मानचित्रण का क्रम होता है, और वह सभी fnलिप्सचिट्ज़ स्थिरांक कुछ K से घिरा होता है। यदि fnमानचित्रण f एकसमान अभिसरण में अभिसरण करता है, तब f भी लिप्सचिट्ज़ होता है, अतः लिप्सचिट्ज़ स्थिरांक समान K से घिरा होता है। विशेष रूप से, इसका तात्पर्य यह होता है कि लिप्सचिट्ज़ स्थिरांक के लिए विशेष सीमा के साथ सघन मीट्रिक स्थान पर वास्तविक-मूल्यवान कार्यों का समूह होता है और सतत कार्यों के बानाच स्थान का बंद और उत्तल उपसमुच्चय होता है। चूँकि, यह परिणाम उन अनुक्रमों के लिए मान्य नहीं होता है जिनमें फलन में असीमित लिप्सचिट्ज़ स्थिरांक हो सकते हैं। वास्तव में, सघन मीट्रिक स्थान पर सभी लिप्सचिट्ज़ फलन का स्थान निरंतर फलन के बनच स्थान का उपबीजगणित होता है, और इस प्रकार इसमें सघनता होती है, जो स्टोन-वीयरस्ट्रैस प्रमेय का प्रारंभिक परिणाम होता है (या वीयरस्ट्रैस सन्निकटन प्रमेय के परिणामस्वरूप, जिससे कि प्रत्येक बहुपद स्थानीय रूप से लिप्सचिट्ज़ निरंतर होता है)।
  • प्रत्येक लिप्सचिट्ज़ निरंतर मानचित्र समान रूप से निरंतर होता है, और इसलिए फोर्टियोरी निरंतर कार्य होता है। अधिक सामान्यतः, परिबद्ध लिप्सचिट्ज़ स्थिरांक के साथ कार्यों का समूह समविराम समूह बनाता है। इस प्रकार अर्ज़ेला-एस्कोली प्रमेय का तात्पर्य यह होता है कि यदि {fn} परिबद्ध लिप्सचिट्ज़ स्थिरांक के साथ कार्यों का समान रूप से परिबद्ध अनुक्रम होता है, फिर इसमें अभिसरण अनुवर्ती होता है। इस प्रकार पिछले पैराग्राफ के परिणाम के अनुसार, सीमा फलन भी लिप्सचिट्ज़ है, अतः लिप्सचिट्ज़ स्थिरांक के लिए समान सीमा के साथ विशेष रूप से लिप्सचिट्ज़ स्थिरांक ≤ K वाले सघन मीट्रिक स्थान होता है।
  • लिप्सचिट्ज़ के समूह के लिए निरंतर कार्य fα सामान्य स्थिरांक के साथ, फलन (और ) लिप्सचिट्ज़ निरंतर भी होता है, जिससे कि समान लिप्सचिट्ज़ स्थिरांक के साथ, परंतु यह कम से कम बिंदु पर सीमित मान मानता होता है।
  • यदि U मीट्रिक स्थान M और f का उपसमुच्चय होता है और U → 'R' लिप्सचिट्ज़ निरंतर फलन होता है, तब सदैव लिप्सचिट्ज़ निरंतर मानचित्र M → 'R' उपस्तिथ होते हैं जो f का विस्तार करते हैं और f के समान लिप्सचिट्ज़ स्थिरांक रखते हैं (यह भी देखें) किर्स्ज़ब्रौन प्रमेय) द्वारा एक्सटेंशन प्रदान किया जाता है।
जहाँ k, U पर f के लिए लिप्सचिट्ज़ स्थिरांक होता है।

लिप्सचिट्ज़ मैनिफोल्ड्स

टोपोलॉजिकल मैनिफ़ोल्ड पर लिप्सचिट्ज़ संरचना को एटलस (टोपोलॉजी) का उपयोग करके परिभाषित किया गया है, जिसके संक्रमण मानचित्र बिलिप्सचिट्ज़ होता हैं। यह संभव होता है जिससे कि बिलिप्सचिट्ज़ मानचित्र छद्म समूह बनाते हैं। इस प्रकार की संरचना किसी को ऐसे मैनिफोल्ड्स के मध्य स्थानीय रूप से लिप्सचिट्ज़ मानचित्रों को परिभाषित करने की अनुमति देती है, उसी प्रकार जैसे कोई चिकनी अनेक गुना के मध्य चिकने मानचित्र को परिभाषित करता है। यदि M और N लिप्सचिट्ज़ मैनिफ़ोल्ड हैं, फिर फलन स्थानीय रूप से लिप्सचिट्ज़ होता है और यदि समन्वय चार्ट की प्रत्येक जोड़ी के लिए और , जहाँ U और V संगत यूक्लिडियन रिक्त स्थान, रचना में खुले समूह होते हैं।

सामान्यतः स्थानीय रूप से लिप्सचिट्ज़ है। यह परिभाषा किसी मीट्रिक को परिभाषित करने पर निर्भर नहीं करती है M या N.[9]

यह संरचना टुकड़े-टुकड़े-रैखिक मैनिफोल्ड और टोपोलॉजिकल मैनिफोल्ड के मध्य मध्यवर्ती होती है। इस प्रकार PL संरचना अद्वितीय लिप्सचिट्ज़ संरचना को जन्म देती है।[10] जबकि लिप्सचिट्ज़ मैनिफोल्ड्स टोपोलॉजिकल मैनिफोल्ड्स से निकटता से संबंधित होते हैं, अतः रेडेमाकर का प्रमेय किसी को विश्लेषण करने की अनुमति देता है, जिससे विभिन्न अनुप्रयोग प्राप्त होते हैं।[9]

एकपक्षीय लिप्सचिट्ज़

मान लीजिए कि F(x), x का ऊपरी अर्ध-निरंतर फलन होता है, और F(x) सभी x के लिए बंद, उत्तल समूह होता है। तब F एकपक्षीय लिप्सचिट्ज़ होता है।[11] यदि

कुछ C के लिए और सभी x के लिए1 और एक्स2.

यह संभव होता है कि फलन F में बहुत बड़ा लिप्सचिट्ज़ स्थिरांक होता है, किन्तु मध्यम आकार का, या यहां तक ​​कि ऋणात्मक, एकपक्षीय लिप्सचिट्ज़ स्थिरांक होता है। उदाहरण के लिए, फलन

लिप्सचिट्ज़ स्थिरांक K = 50 होता है और एकपक्षीय लिप्सचिट्ज़ स्थिरांक C = 0 होता है। उदाहरण के लिए, जो एकपक्षीय लिप्सचिट्ज़ होता है किन्तु लिप्सचिट्ज़ निरंतर नहीं होता है वह F(x) = e−x होता है, अतः C = 0 के साथ होता है।

यह भी देखें

  • संकुचन मानचित्रण – Function reducing distance between all points
  • दीनी निरंतरता
  • निरंतरता का मापांक
  • अर्ध-आइसोमेट्री
  • जॉनसन-लिंडेनस्ट्रॉस लेम्मा - किसी भी पूर्णांक n≥0 के लिए, कोई भी परिमित उपसमुच्चय X⊆'R'n, और कोई भी वास्तविक संख्या 0<ε<1, वहां (1+ε)-द्वि-लिप्सचिट्ज़ फलन उपस्तिथ है जहाँ

संदर्भ

  1. Sohrab, H. H. (2003). बुनियादी वास्तविक विश्लेषण. Vol. 231. Birkhäuser. p. 142. ISBN 0-8176-4211-0.
  2. Thomson, Brian S.; Bruckner, Judith B.; Bruckner, Andrew M. (2001). प्राथमिक वास्तविक विश्लेषण. Prentice-Hall. p. 623.
  3. Searcóid, Mícheál Ó (2006), "Lipschitz Functions", Metric Spaces, Springer undergraduate mathematics series, Berlin, New York: Springer-Verlag, ISBN 978-1-84628-369-7
  4. Burago, Dmitri; Burago, Yuri; Ivanov, Sergei (2001). मीट्रिक ज्यामिति में एक पाठ्यक्रम. American Mathematical Society. ISBN 0-8218-2129-6.
  5. Mahroo, Omar A; Shalchi, Zaid; Hammond, Christopher J (2014). "'Dilatation' and 'dilation': trends in use on both sides of the Atlantic". British Journal of Ophthalmology. 98 (6): 845–846. doi:10.1136/bjophthalmol-2014-304986. PMID 24568871.
  6. Gromov, Mikhael (1999). "Quantitative Homotopy Theory". In Rossi, Hugo (ed.). Prospects in Mathematics: Invited Talks on the Occasion of the 250th Anniversary of Princeton University, March 17-21, 1996, Princeton University. American Mathematical Society. p. 46. ISBN 0-8218-0975-X.
  7. Benyamini, Yoav; Lindenstrauss, Joram (2000). ज्यामितीय अरेखीय कार्यात्मक विश्लेषण. American Mathematical Society. p. 11. ISBN 0-8218-0835-4.
  8. Robbin, Joel W., Continuity and Uniform Continuity (PDF)
  9. 9.0 9.1 Rosenberg, Jonathan (1988). "लिप्सचिट्ज़ मैनिफोल्ड्स पर विश्लेषण के अनुप्रयोग". Miniconferences on harmonic analysis and operator algebras (Canberra, 1987). Canberra: Australian National University. pp. 269–283. MR954004
  10. "Topology of manifolds", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  11. Donchev, Tzanko; Farkhi, Elza (1998). "एक तरफा लिप्सचिट्ज़ विभेदक समावेशन की स्थिरता और यूलर अनुमान". SIAM Journal on Control and Optimization. 36 (2): 780–796. doi:10.1137/S0363012995293694.