अभिन्नों का समय विकास
अंतर कलन के भीतर, कई अनुप्रयोगों में, अगर किसी को भी आयतन अभिन्न या सतह अभिन्न के व्युत्पन्न की गणना करने की आवश्यकता होती है, जिसका इंटीग्रल का डोमेन, साथ ही एकीकृत, एक विशेष पैरामीटर का फलन (गणित) होता है। भौतिक अनुप्रयोगों में, वह पैरामीटर प्रायः समय t होता है।
परिचय
पर्याप्त रूप से सुचारू फलन इंटीग्रैंड्स के साथ एक-आयामी इंटीग्रल्स के परिवर्तन की दर, कैलकुलस के मौलिक प्रमेय के इंटीग्रल साइन के तहत इस भेदभाव द्वारा नियंत्रित होती है:
गतिमान सतहों की गणना[1] यूक्लिडियन स्थान पर वॉल्यूम इंटीग्रल्स और सतहों, घुमावदार सतहों की विभेदक ज्यामिति पर सतह इंटीग्रल्स के लिए अनुरूप सूत्र प्रदान करता है, जिसमें चलती समोच्च सीमा (टोपोलॉजी) के साथ घुमावदार सतहों पर इंटीग्रल्स सम्मिलित हैं।
वॉल्यूम इंटीग्रल्स
मान लीजिए कि t एक समय-सदृश पैरामीटर है और एक चिकनी सतह (टोपोलॉजी) सीमा S के साथ फलन Ω के समय-निर्भर डोमेन पर विचार करता है। मान लीजिए F एक समय-निर्भर अपरिवर्तनीय (गणित) फ़ील्ड है जो Ω के आंतरिक भाग में परिभाषित है। फिर अभिन्न के परिवर्तन की दर निम्नलिखित नियम द्वारा शासित है:[1]
जहां C गतिमान सतहों की गणना है। इंटरफ़ेस C का वेग गतिमान सतहों की गणना में मूलभूत अवधारणा है। उपरोक्त समीकरण में, C को बाहरी सतह के सामान्य के संबंध में व्यक्त किया जाना चाहिए। इस नियम को कैलकुलस के मौलिक प्रमेय का सामान्यीकरण माना जा सकता है।
सतह अभिन्नता
एक संबंधित नियम सतह अभिन्न के व्युत्पन्न को नियंत्रित करता है
निम्नलिखित नियम द्वारा शासित है
जहां -व्युत्पन्न चलती सतहों की गणना में मौलिक ऑपरेटर (गणित) है, जो मूल रूप से जैक्स हैडामर्ड द्वारा प्रस्तावित है। वक्रता माध्य वक्रता का निशान है। इस नियम में, C को बाहरी सामान्य के संबंध में अभिव्यक्ति की आवश्यकता नहीं है, जब तक कि सामान्य की पसंद C और के लिए सुसंगत है . उपरोक्त समीकरण में पहला पद F में परिवर्तन की दर को दर्शाता है जबकि दूसरा क्षेत्र के विस्तार या सिकुड़न को सही करता है। उपरोक्त समीकरण को लागू करने से यह तथ्य सामने आता है कि माध्य वक्रता क्षेत्र में परिवर्तन की दर को दर्शाती है तब से क्षेत्र है:
उपरोक्त समीकरण माध्य वक्रता दर्शाता है इसे उचित रूप से क्षेत्र का आकार ढाल कहा जा सकता है। एक विकास द्वारा शासित
लोकप्रिय माध्य वक्रता प्रवाह है और क्षेत्र के संबंध में सबसे तीव्र अवतरण का प्रतिनिधित्व करता है। ध्यान दें कि त्रिज्या R के एक गोले के लिए,
, और त्रिज्या R के एक वृत्त के लिए,
बाहरी सामान्य के संबंध में.
गतिशील समोच्च सीमाओं के साथ सतही समाकलन
मान लीजिए कि S एक गतिशील सतह है जिसकी गतिमान रूपरेखा γ है। मान लीजिए कि S के संबंध में समोच्च γ का वेग c है। तब समय पर निर्भर अभिन्न के परिवर्तन की दर:
है
अंतिम शब्द विलय के कारण क्षेत्र में परिवर्तन को दर्शाता है, जैसा कि दाहिनी ओर का आंकड़ा दर्शाता है।