अंगूठे का पंक्ति नियम

From Vigyanwiki
लोग कतार में हैं

अंगूठे का कतार नियम (क्यूआरओटी) एक गणितीय सूत्र है, जिसे कतार बाधा समीकरण के रूप में जाना जाता है, जब इसका उपयोग कतार क्षेत्र की सेवा के लिए आवश्यक परिवेषक का अनुमान लगाने के लिए किया जाता है। सूत्र को परिवेषक की संख्या ('एस), सेवा अनुरोधकर्ताओं की कुल संख्या (एन), सेवा समय (आर), और कतार खाली करने के लिए अधिकतम समय (टी) से संबंधित असमानता के रूप में लिखा गया है:

 [1][2]

क्यूआरओटी कतार की समस्याओं को दूर करने के लिए एक मोटे अनुमान के रूप में कार्य करता है।[2]मानक कतार सूत्रों की तुलना में, संभाव्यता या कतार सिद्धांत को शामिल किए बिना परिवेषक की आवश्यक संख्या की गणना करना काफी सरल है। इसलिए कई स्थितियों में उपयोग करने के लिए अंगूठे का नियम अधिक व्यावहारिक है।[1]


सूत्र

QROT सूत्र की व्युत्पत्ति इस प्रकार है। आगमन दर ग्राहकों की कुल संख्या N और कतार T को समाप्त करने के लिए आवश्यक अधिकतम समय का अनुपात है।

सेवा दर सेवा समय r का व्युत्क्रम है।

आगमन दर और सेवा दर के अनुपात पर विचार करना सुविधाजनक है।

परिवेषककी मानें तो कतारसिस्टम का उपयोग 1 से बड़ा नहीं होना चाहिए।

पहले तीन समीकरणों का संयोजन देता है . इसे और चौथे समीकरण को मिलाने पर प्राप्त होता है .

सरल करने के लिए, अंगूठे के कतारनियम का सूत्र है .

उपयोग

अंगूठे का पंक्तिबद्ध नियम परिवेषककी संख्या, ग्राहकों की कुल संख्या, सेवा समय और कतार समाप्त करने के लिए आवश्यक अधिकतम समय के संबंध में कतार की समस्याओं को हल करने के लिए कतार प्रबंधन की सहायता करता है। कतार प्रणाली को और अधिक कुशल बनाने के लिए, इन मूल्यों को अंगूठे के नियम के अनुसार समायोजित किया जा सकता है।[3] निम्नलिखित उदाहरण बताते हैं कि नियम का उपयोग कैसे किया जा सकता है।

सम्मेलन दोपहर का भोजन

कॉन्फ्रेंस लंच आमतौर पर सेल्फ-सर्विस होते हैं। प्रत्येक सर्विंग टेबल के 2 किनारे होते हैं जहाँ से लोग अपना भोजन उठा सकते हैं। यदि 1000 उपस्थित लोगों में से प्रत्येक को ऐसा करने के लिए 45 सेकंड की आवश्यकता है, तो कितनी सर्विंग टेबल प्रदान की जानी चाहिए ताकि एक घंटे में दोपहर का भोजन परोसा जा सके?[2]

समाधान: दिया गया r = 45, N = 1000, T = 3600, हम s प्राप्त करने के लिए सामान्य नियम का उपयोग करते हैं: . तालिका के दो पहलू हैं जिनका उपयोग किया जा सकता है। तो आवश्यक तालिकाओं की संख्या है . हम इसे एक पूर्ण संख्या तक ले जाते हैं क्योंकि परिवेषककी संख्या असतत होनी चाहिए। इस प्रकार, 7 सर्विंग टेबल प्रदान की जानी चाहिए।[2]


छात्र पंजीकरण

10,000 छात्रों के एक स्कूल को छात्र पंजीकरण के लिए निश्चित दिन निर्धारित करना होगा। एक कार्य दिवस 8 घंटे का होता है। प्रत्येक छात्र को पंजीकृत होने के लिए लगभग 36 सेकंड की आवश्यकता होती है। सभी छात्रों को पंजीकृत करने के लिए कितने दिनों की आवश्यकता है?[2]

समाधान: दिए गए s = 1, N = 10,000, r = 36, थंब यील्ड का नियम T: . एक दिन के लिए काम के घंटे 8 घंटे (28,800 सेकेंड) दिए गए हैं, आवश्यक पंजीकरण दिनों की संख्या है दिन।[2]


छोड़ दें

सुबह के चरम समय के दौरान लगभग 4500 कारें प्राथमिक विद्यालय में अपने बच्चों को छोड़ देती हैं। प्रत्येक ड्रॉप-ऑफ के लिए लगभग 60 सेकंड की आवश्यकता होती है। प्रत्येक कार को रोकने और पैंतरेबाज़ी करने के लिए लगभग 6 मीटर की आवश्यकता होती है। न्यूनतम ड्रॉप ऑफ़ लाइन के लिए कितनी जगह की आवश्यकता है?[2]

समाधान: N = 4500, T = 60, r = 1 दिया गया है, थंब यील्ड का नियम: . यह देखते हुए कि प्रत्येक कार के लिए 6 मीटर की जगह है, लाइन कम से कम होनी चाहिए मीटर।[2]


यह भी देखें

  • लिटिल का नियम

संदर्भ

  1. 1.0 1.1 Teknomo, Kardi (2012). "Queuing Rule of Thumb based on M/M/s Queuing Theory with Applications in Construction Management". Civil Engineering Dimension. 14 (3). doi:10.9744/ced.14.3.139-146. S2CID 53757029.
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 Teknomo, Kardi. "अंगूठे का कतार नियम".
  3. Teknomo, Kardi (April 2016). अंगूठे का कतार नियम. MathCon.


अग्रिम पठन


बाहरी संबंध