डेविड प्रमेय का सितारा
डेविड स्टार प्रमेय द्विपद गुणांक के अंकगणितीय गुणों पर एक गणितीय परिणाम है। इसकी खोज हेनरी डब्ल्यू गोल्ड ने 1972 में की थी।
कथन
पास्कल के त्रिभुज में डेविड स्टार आकार के दो त्रिभुजों में से प्रत्येक को बनाने वाले द्विपद गुणांक के सबसे बड़े सामान्य भाजक बराबर हैं:
उदाहरण
पास्कल के त्रिभुज की पंक्तियाँ 8, 9, और 10 हैं
1 8 28 56 70 56 28 8 1 1 9 36 84 126 126 84 36 9 1 1 10 45 120 210 252 210 120 45 10 1
n=9, k=3 या n=9, k=6 के लिए, तत्व 84 क्रम से तत्वों 28, 56, 126, 210, 120, 36 से घिरा हुआ है। वैकल्पिक मान लेते हुए, हमारे पास gcd(28) है , 126, 120) = 2 = जीसीडी(56, 210, 36)।
तत्व 36 अनुक्रम 8, 28, 84, 120, 45, 9 से घिरा हुआ है, और वैकल्पिक मान लेने पर हमारे पास gcd(8, 84, 45) = 1 = gcd(28, 120, 9) है।
सामान्यीकरण
उपरोक्त सबसे बड़ा सामान्य भाजक भी बराबर होता है [1] इस प्रकार उपरोक्त उदाहरण में तत्व 84 (इसके सबसे दाहिने स्वरूप में) के लिए, हमारे पास gcd(70, 56, 28, 8) = 2 भी है। बदले में इस परिणाम में और भी सामान्यीकरण हैं।
संबंधित परिणाम
तीन संख्याओं के दो सेट जिनके बारे में स्टार ऑफ डेविड प्रमेय कहता है कि उनके सबसे बड़े सामान्य भाजक समान हैं, उनके उत्पाद भी समान हैं।[1]उदाहरण के लिए, फिर से यह देखते हुए कि तत्व 84 क्रम से तत्वों 28, 56, 126, 210, 120, 36 से घिरा हुआ है, और फिर से वैकल्पिक मान लेते हुए, हमारे पास 28×126×120 = 2 है6×33×5×72=56×210×36. इस परिणाम की पुष्टि प्रत्येक द्विपद गुणांक को भाज्य रूप में लिखकर, उपयोग करके की जा सकती है
यह भी देखें
- तथ्यात्मक और द्विपद विषयों की सूची
संदर्भ
- ↑ 1.0 1.1 Weisstein, Eric W. "Star of David Theorem." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/StarofDavidTheorem.html
- H. W. Gould, "A New Greatest Common Divisor Property of The Binomial Coefficients", Fibonacci Quarterly 10 (1972), 579–584.
- Star of David theorem, from MathForum.
- Star of David theorem, blog post.