प्रत्याशा मूल्य (क्वांटम यांत्रिकी)
क्वांटम यांत्रिकी में, प्रत्याशा मूल्य एक प्रयोग के परिणाम (माप) का संभावित अपेक्षित मूल्य है। इसे माप के सभी संभावित परिणामों के औसत के रूप में उनकी संभावना के आधार पर सोचा जा सकता है, और इस तरह यह माप का सबसे अधिक संभावित मूल्य नहीं है; वास्तव में प्रत्याशा मूल्य के घटित होने की शून्य संभावना हो सकती है (उदाहरण के लिए माप जो केवल पूर्णांक मान प्राप्त कर सकते हैं उनका गैर-पूर्णांक माध्य हो सकता है)। यह क्वांटम भौतिकी के सभी क्षेत्रों में एक मौलिक अवधारणा है।
परिचालन परिभाषा
एक ऑपरेटर_(भौतिकी) पर विचार करें . अपेक्षा मूल्य तब है अच्छा केट संकेतन में एक सामान्यीकरण (सांख्यिकी) राज्य वेक्टर।
क्वांटम यांत्रिकी में औपचारिकता
क्वांटम सिद्धांत में, एक प्रायोगिक सेटअप का वर्णन अवलोकन योग्य द्वारा किया जाता है मापा जाना है, और जितना राज्य प्रणाली में। की अपेक्षा मूल्य राज्य में के रूप में दर्शाया गया है .
गणितीय रूप से, हिल्बर्ट स्थान पर एक स्व-सहायक ऑपरेटर है। क्वांटम यांत्रिकी में सबसे अधिक उपयोग किए जाने वाले मामले में, एक शुद्ध अवस्था है, जिसे सामान्यीकृत द्वारा वर्णित किया गया है[lower-alpha 1] वेक्टर हिल्बर्ट क्षेत्र में. की अपेक्षा मूल्य राज्य में परिभाषित किया जाता है
|
(1) |
यदि गतिशीलता (भौतिकी) पर विचार किया जाए, तो या तो वेक्टर या ऑपरेटर इसे समय-निर्भर माना जाता है, यह इस पर निर्भर करता है कि श्रोडिंगर चित्र या हाइजेनबर्ग चित्र का उपयोग किया गया है या नहीं। हालाँकि, अपेक्षा मूल्य का विकास इस विकल्प पर निर्भर नहीं करता है।
अगर eigenvectors का एक पूरा सेट है , eigenvalues के साथ , तब (1) के रूप में व्यक्त किया जा सकता है[1]
|
(2) |
यह अभिव्यक्ति अंकगणित माध्य के समान है, और गणितीय औपचारिकता के भौतिक अर्थ को दर्शाती है: eigenvalues प्रयोग के संभावित परिणाम हैं,[lower-alpha 2] और उनके संगत गुणांक संभावना है कि यह परिणाम घटित होगा; इसे अक्सर संक्रमण संभावना कहा जाता है।
एक विशेष रूप से साधारण मामला तब सामने आता है जब एक प्रक्षेपण (रैखिक बीजगणित) है, और इस प्रकार इसमें केवल eigenvalues 0 और 1 हैं। यह भौतिक रूप से हाँ-नहीं प्रकार के प्रयोग से मेल खाता है। इस मामले में, अपेक्षा मान वह संभावना है कि प्रयोग का परिणाम 1 है, और इसकी गणना इस प्रकार की जा सकती है
|
(3) |
क्वांटम सिद्धांत में, एक ऑपरेटर के लिए गैर-अलग-अलग स्पेक्ट्रम होना भी संभव है, जैसे कि स्थिति ऑपरेटर क्वांटम यांत्रिकी में. इस ऑपरेटर के पास पूरी तरह से निरंतर स्पेक्ट्रम है, जिसमें eigenvalues और eigenvectors एक निरंतर पैरामीटर पर निर्भर करते हैं, . विशेष रूप से, ऑपरेटर एक स्थानिक वेक्टर पर कार्य करता है जैसा .[2] इस मामले में, वेक्टर एक सम्मिश्र संख्या|सम्मिश्र-मूल्यवान फलन के रूप में लिखा जा सकता है के स्पेक्ट्रम पर (आमतौर पर वास्तविक रेखा)। यह औपचारिक रूप से राज्य वेक्टर को प्रक्षेपित करके प्राप्त किया जाता है ऑपरेटर के eigenvalues पर, जैसा कि अलग मामले में होता है . ऐसा होता है कि स्थिति ऑपरेटर के आइजनवेक्टर राज्यों के वेक्टर स्थान के लिए एक पूर्ण आधार बनाते हैं, और इसलिए क्वांटम यांत्रिकी में पूर्णता संबंध का पालन करते हैं:
तब प्रत्याशा मूल्य कहा जा सकता है, जहां x सूत्र के रूप में असीमित है
|
(4) |
एक समान सूत्र गति ऑपरेटर के लिए लागू होता है , उन प्रणालियों में जहां इसका निरंतर स्पेक्ट्रम होता है।
उपरोक्त सभी सूत्र शुद्ध अवस्थाओं के लिए मान्य हैं केवल। प्रमुख रूप से ऊष्मप्रवैगिकी और क्वांटम प्रकाशिकी में भी मिश्रित अवस्थाएँ महत्वपूर्ण हैं; इन्हें एक सकारात्मक ट्रेस-वर्ग ऑपरेटर द्वारा वर्णित किया गया है , सांख्यिकीय ऑपरेटर या घनत्व मैट्रिक्स। तब अपेक्षित मूल्य इस प्रकार प्राप्त किया जा सकता है
|
(5) |
सामान्य सूत्रीकरण
सामान्य तौर पर, क्वांटम बताता है वेधशालाओं के सेट पर सकारात्मक सामान्यीकृत रैखिक कार्यात्मकताओं द्वारा वर्णित किया गया है, गणितीय रूप से अक्सर सी*-बीजगणित के रूप में लिया जाता है। किसी अवलोकनीय का अपेक्षित मूल्य फिर द्वारा दिया जाता है
|
(6) |
यदि अवलोकन योग्य वस्तुओं का बीजगणित हिल्बर्ट स्थान पर अपरिवर्तनीय रूप से कार्य करता है, और यदि एक सामान्य कार्यात्मकता है, अर्थात यह अति कमजोर टोपोलॉजी में निरंतर है, तो इसे इस प्रकार लिखा जा सकता है
एक स्व-सहायक संचालिका माना जाता है। सामान्य स्थिति में, इसका स्पेक्ट्रम न तो पूरी तरह से अलग होगा और न ही पूरी तरह से निरंतर। फिर भी कोई लिख सकता है एक वर्णक्रमीय प्रमेय में,
परिमित रूप से कई कणों (क्वांटम यांत्रिकी, सख्त अर्थ में) के गैर-सापेक्षवादी सिद्धांतों में, मानी जाने वाली अवस्थाएँ आम तौर पर सामान्य होती हैं[clarification needed]. हालाँकि, क्वांटम सिद्धांत के अन्य क्षेत्रों में भी, गैर-सामान्य अवस्थाएँ उपयोग में हैं: उदाहरण के लिए, वे प्रकट होती हैं। असीम रूप से विस्तारित मीडिया के क्वांटम सांख्यिकीय यांत्रिकी में केएमएस राज्यों के रूप में,[3] और क्वांटम क्षेत्र सिद्धांत में आवेशित अवस्थाओं के रूप में।[4] इन मामलों में, अपेक्षा मूल्य केवल अधिक सामान्य सूत्र द्वारा निर्धारित किया जाता है (6).
कॉन्फ़िगरेशन स्थान में उदाहरण
उदाहरण के तौर पर, कॉन्फ़िगरेशन स्थान (भौतिकी)भौतिकी) प्रतिनिधित्व में, एक स्थानिक आयाम में एक क्वांटम यांत्रिक कण पर विचार करें। यहाँ हिल्बर्ट स्थान है , वास्तविक रेखा पर वर्ग-अभिन्न कार्यों का स्थान। वैक्टर कार्यों द्वारा दर्शाया जाता है , तरंग फलन कहलाते हैं। अदिश गुणनफल द्वारा दिया जाता है . संभाव्यता वितरण के रूप में तरंग कार्यों की सीधी व्याख्या होती है:
एक अवलोकनीय के रूप में, स्थिति संचालक पर विचार करें , जो वेवफंक्शन पर कार्य करता है द्वारा
सामान्य तौर पर, किसी भी अवलोकन योग्य की अपेक्षा को प्रतिस्थापित करके गणना की जा सकती है उपयुक्त ऑपरेटर के साथ. उदाहरण के लिए, औसत गति की गणना करने के लिए, कोई कॉन्फ़िगरेशन स्पेस (भौतिकी) में गति ऑपरेटर का उपयोग करता है, . स्पष्ट रूप से, इसकी अपेक्षा मूल्य है
यह भी देखें
टिप्पणियाँ
संदर्भ
- ↑ Probability, Expectation Value and Uncertainty
- ↑ Cohen-Tannoudji, Claude, 1933- (June 2020). Quantum mechanics. Volume 2. Diu, Bernard,, Laloë, Franck, 1940-, Hemley, Susan Reid,, Ostrowsky, Nicole, 1943-, Ostrowsky, D. B. Weinheim. ISBN 978-3-527-82272-0. OCLC 1159410161.
{{cite book}}
: CS1 maint: location missing publisher (link) CS1 maint: multiple names: authors list (link) - ↑ Bratteli, Ola; Robinson, Derek W (1987). ऑपरेटर बीजगणित और क्वांटम सांख्यिकीय यांत्रिकी 1. Springer. ISBN 978-3-540-17093-8. 2nd edition.
- ↑ Haag, Rudolf (1996). स्थानीय क्वांटम भौतिकी. Springer. pp. Chapter IV. ISBN 3-540-61451-6.
अग्रिम पठन
The expectation value, in particular as presented in the section "Formalism in quantum mechanics", is covered in most elementary textbooks on quantum mechanics.
For a discussion of conceptual aspects, see:
- Isham, Chris J (1995). Lectures on Quantum Theory: Mathematical and Structural Foundations. Imperial College Press. ISBN 978-1-86094-001-9.