ब्लैक-स्कोल्स समीकरण

From Vigyanwiki
Revision as of 14:01, 13 July 2023 by alpha>Indicwiki (Created page with "{{Short description|Partial differential equation in mathematical finance}} गणितीय वित्त में, ब्लैक-स्कोल्स समी...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणितीय वित्त में, ब्लैक-स्कोल्स समीकरण एक आंशिक अंतर समीकरण (पीडीई) है जो ब्लैक-स्कोल्स मॉडल के तहत यूरोपीय कॉल या यूरोपीय पुट के मूल्य विकास को नियंत्रित करता है।[1] मोटे तौर पर, यह शब्द एक समान पीडीई को संदर्भित कर सकता है जिसे विभिन्न प्रकार के विकल्प (वित्त), या अधिक सामान्यतः, व्युत्पन्न (वित्त) के लिए प्राप्त किया जा सकता है।

बाज़ार डेटा के मापदंडों के साथ सिम्युलेटेड ज्यामितीय ब्राउनियन गतियाँ

किसी यूरोपीय कॉल के लिए या बिना किसी लाभांश का भुगतान करने वाले अंतर्निहित स्टॉक पर लगाने के लिए, समीकरण यह है:

जहां V स्टॉक मूल्य S और समय t के फलन के रूप में विकल्प की कीमत है, r जोखिम-मुक्त ब्याज दर है, और स्टॉक की अस्थिरता है.

समीकरण के पीछे मुख्य वित्तीय अंतर्दृष्टि यह है कि, एक घर्षण रहित बाजार की मॉडल धारणा के तहत, कोई व्यक्ति अंतर्निहित परिसंपत्ति को सही तरीके से खरीद और बेचकर विकल्प को पूरी तरह से हेज (वित्त) कर सकता है और परिणामस्वरूप "जोखिम को खत्म कर सकता है।" यह बचाव, बदले में, यह दर्शाता है कि विकल्प के लिए केवल एक ही सही कीमत है, जैसा कि ब्लैक-स्कोल्स फॉर्मूला द्वारा लौटाया गया है।

ब्लैक-स्कोल्स पीडीई की वित्तीय व्याख्या

समीकरण की एक ठोस व्याख्या होती है जिसे अक्सर चिकित्सकों द्वारा उपयोग किया जाता है और यह अगले उपधारा में दी गई सामान्य व्युत्पत्ति का आधार है। समीकरण को इस रूप में फिर से लिखा जा सकता है:

बायीं ओर एक समय क्षय शब्द, समय के संबंध में व्युत्पन्न मूल्य में परिवर्तन, थीटा कहा जाता है, और दूसरा स्थानिक व्युत्पन्न गामा शामिल एक शब्द, अंतर्निहित मूल्य के संबंध में व्युत्पन्न मूल्य की उत्तलता शामिल है। दाहिनी ओर डेरिवेटिव में एक लंबी स्थिति और एक छोटी स्थिति से मिलकर जोखिम रहित रिटर्न है अंतर्निहित के शेयर.

ब्लैक और स्कोल्स की अंतर्दृष्टि यह थी कि दाहिनी ओर द्वारा दर्शाया गया पोर्टफोलियो जोखिम रहित है: इस प्रकार समीकरण कहता है कि किसी भी अनंत समय अंतराल पर जोखिम रहित रिटर्न को थीटा और गामा को शामिल करने वाले शब्द के योग के रूप में व्यक्त किया जा सकता है। एक विकल्प के लिए, थीटा आम तौर पर नकारात्मक होती है, जो विकल्प का उपयोग करने के लिए कम समय होने के कारण मूल्य में हानि को दर्शाती है (लाभांश के बिना किसी अंतर्निहित पर यूरोपीय कॉल के लिए, यह हमेशा नकारात्मक होता है)। गामा आम तौर पर सकारात्मक होता है और इसलिए गामा शब्द विकल्प को धारण करने में हुए लाभ को दर्शाता है। समीकरण में कहा गया है कि किसी भी अतिसूक्ष्म समय अंतराल में थीटा से हानि और गामा पद से लाभ को एक-दूसरे की भरपाई करनी चाहिए ताकि परिणाम जोखिम रहित दर पर वापसी हो।

विकल्प जारीकर्ता के दृष्टिकोण से, उदा. एक निवेश बैंक, गामा शब्द विकल्प की हेजिंग की लागत है। (चूंकि गामा तब सबसे बड़ा होता है जब अंतर्निहित का स्पॉट मूल्य विकल्प के स्ट्राइक मूल्य के करीब होता है, उस परिस्थिति में विक्रेता की हेजिंग लागत सबसे बड़ी होती है।)

ब्लैक-स्कोल्स पीडीई की व्युत्पत्ति

निम्नलिखित व्युत्पत्ति जॉन सी. हल (अर्थशास्त्री)|हल के विकल्प, वायदा और अन्य डेरिवेटिव में दी गई है।[2]: 287–288  यह, बदले में, मूल ब्लैक-स्कोल्स पेपर में क्लासिक तर्क पर आधारित है।

उपरोक्त मॉडल मान्यताओं के अनुसार, अंतर्निहित परिसंपत्ति (आमतौर पर एक स्टॉक) की कीमत एक ज्यामितीय ब्राउनियन गति का अनुसरण करती है। वह है

जहां W एक स्टोकेस्टिक वैरिएबल (वीनर प्रक्रिया) है। ध्यान दें कि W, और परिणामस्वरूप इसकी असीम वृद्धि dW, स्टॉक के मूल्य इतिहास में अनिश्चितता का एकमात्र स्रोत दर्शाता है। सहज रूप से, W(t) एक यादृच्छिक प्रक्रिया है जो इतने यादृच्छिक तरीके से ऊपर और नीचे घूमती है कि किसी भी समय अंतराल पर इसका अपेक्षित परिवर्तन 0 है। (इसके अलावा, समय T के साथ इसका विचरण T के बराबर है; देखें) Wiener process § Basic properties); डब्ल्यू के लिए एक अच्छा असतत एनालॉग एक सरल यादृच्छिक चलना है। इस प्रकार उपरोक्त समीकरण बताता है कि स्टॉक पर रिटर्न की असीम दर में μdt का अपेक्षित मूल्य और भिन्नता है .

किसी विकल्प का भुगतान (या स्टॉक के लिए कोई व्युत्पन्न आकस्मिकता)। S) परिपक्वता पर ज्ञात होता है। पहले के समय में इसका मूल्य ज्ञात करने के लिए हमें यह जानना होगा कि कैसे के एक कार्य के रूप में विकसित होता है और . इटो की प्रमेयिका के अनुसार हमारे पास दो चर हैं

अब एक निश्चित पोर्टफोलियो पर विचार करें, जिसे डेल्टा हेजिंग|डेल्टा-हेज पोर्टफोलियो कहा जाता है, जिसमें एक विकल्प छोटा और एक लंबा विकल्प शामिल है। समय पर शेयर . इन होल्डिंग्स का मूल्य है

समयावधि के साथ , होल्डिंग्स के मूल्यों में परिवर्तन से कुल लाभ या हानि है (लेकिन नीचे नोट देखें):

अब अंतरों को डेल्टा से प्रतिस्थापित करके dS/S और dV के समीकरणों को अलग करें:

और उचित रूप से उन्हें अभिव्यक्ति में प्रतिस्थापित करें :

ध्यान दें कि शब्द लुप्त हो गया है. इस प्रकार अनिश्चितता समाप्त हो गई है और पोर्टफोलियो प्रभावी रूप से जोखिम रहित है। इस पोर्टफोलियो पर रिटर्न की दर किसी अन्य जोखिम रहित साधन पर रिटर्न की दर के बराबर होनी चाहिए; अन्यथा, मध्यस्थता के अवसर होंगे। अब मान लीजिए कि रिटर्न की जोखिम-मुक्त दर है हमारे पास समयावधि होनी चाहिए

यदि अब हम अपने सूत्रों को प्रतिस्थापित करें और हमने प्राप्त:

सरलीकरण करते हुए, हम प्रसिद्ध ब्लैक-स्कोल्स आंशिक अंतर समीकरण पर पहुंचते हैं:

ब्लैक-स्कोल्स मॉडल की मान्यताओं के साथ, यह दूसरा क्रम आंशिक अंतर समीकरण किसी भी प्रकार के विकल्प के लिए तब तक लागू रहता है जब तक उसका मूल्य कार्य करता है के संबंध में दो बार भिन्न है और एक बार के संबंध में . विभिन्न विकल्पों के लिए अलग-अलग मूल्य निर्धारण सूत्र समाप्ति पर भुगतान फ़ंक्शन की पसंद और उचित सीमा शर्तों से उत्पन्न होंगे।

तकनीकी नोट: ऊपर दिए गए विवेकाधीन दृष्टिकोण से अस्पष्ट एक सूक्ष्मता यह है कि पोर्टफोलियो मूल्य में मामूली परिवर्तन केवल धारित परिसंपत्तियों के मूल्यों में मामूली परिवर्तन के कारण था, न कि परिसंपत्तियों की स्थिति में बदलाव के कारण। दूसरे शब्दों में, पोर्टफोलियो को स्व-वित्तपोषण पोर्टफोलियो|स्व-वित्तपोषण माना गया था।[citation needed]

वैकल्पिक व्युत्पत्ति

यहां एक वैकल्पिक व्युत्पत्ति है जिसका उपयोग उन स्थितियों में किया जा सकता है जहां शुरू में यह स्पष्ट नहीं है कि हेजिंग पोर्टफोलियो क्या होना चाहिए। (संदर्भ के लिए, श्रेवे खंड II का 6.4 देखें)।[3] ब्लैक-स्कोल्स मॉडल में, यह मानते हुए कि हमने जोखिम-तटस्थ संभाव्यता माप को चुना है, अंतर्निहित स्टॉक मूल्य S(t) को एक ज्यामितीय ब्राउनियन गति के रूप में विकसित माना जाता है:

चूंकि यह स्टोचैस्टिक डिफरेंशियल समीकरण (एसडीई) दिखाता है कि स्टॉक मूल्य विकास मार्कोव श्रृंखला है, इस अंतर्निहित पर कोई भी व्युत्पन्न समय टी और वर्तमान समय में स्टॉक मूल्य, एस (टी) का एक कार्य है। फिर इटो के लेम्मा का एक अनुप्रयोग रियायती व्युत्पन्न प्रक्रिया के लिए एक एसडीई देता है , जो एक मार्टिंगेल होना चाहिए। इसे धारण करने के लिए, बहाव शब्द शून्य होना चाहिए, जिसका तात्पर्य ब्लैक-स्कोल्स पीडीई से है।

यह व्युत्पत्ति मूल रूप से फेनमैन-केएसी फॉर्मूला का एक अनुप्रयोग है और जब भी अंतर्निहित परिसंपत्तियां दिए गए एसडीई के अनुसार विकसित होती हैं तो इसका प्रयास किया जा सकता है।

ब्लैक-स्कोल्स पीडीई को हल करना

एक बार जब ब्लैक-स्कोल्स पीडीई, सीमा और टर्मिनल स्थितियों के साथ, एक व्युत्पन्न के लिए प्राप्त हो जाता है, तो पीडीई को संख्यात्मक विश्लेषण के मानक तरीकों, जैसे कि एक प्रकार की परिमित अंतर विधि का उपयोग करके संख्यात्मक रूप से हल किया जा सकता है।[4] कुछ मामलों में, एक सटीक सूत्र के अनुसार हल करना संभव है, जैसे कि यूरोपीय कॉल के मामले में, जो ब्लैक और स्कोल्स द्वारा किया गया था।

कॉल विकल्प के लिए ऐसा करने के लिए, याद रखें कि उपरोक्त पीडीई में सीमा शर्तें हैं [5]

अंतिम शर्त उस समय विकल्प का मूल्य बताती है जब विकल्प परिपक्व होता है। अन्य स्थितियाँ संभव हैं क्योंकि S 0 या अनंत तक जाता है। उदाहरण के लिए, अन्य स्थितियों में उपयोग की जाने वाली सामान्य स्थितियाँ यह हैं कि जब S 0 पर जाता है तो डेल्टा गायब हो जाता है और S अनंत तक जाता है तो गामा गायब हो जाता है; ये उपरोक्त स्थितियों के समान ही सूत्र देंगे (सामान्य तौर पर, अलग-अलग सीमा स्थितियाँ अलग-अलग समाधान देंगी, इसलिए मौजूदा स्थिति के लिए उपयुक्त परिस्थितियों को चुनने के लिए कुछ वित्तीय अंतर्दृष्टि का उपयोग किया जाना चाहिए)।

पीडीई का समाधान किसी भी पहले के समय में विकल्प का मूल्य देता है, . पीडीई को हल करने के लिए हम मानते हैं कि यह एक कॉची-यूलर समीकरण है जिसे परिवर्तन-परिवर्तनीय परिवर्तन शुरू करके गर्मी समीकरण में परिवर्तित किया जा सकता है

तब ब्लैक-स्कोल्स पीडीई एक प्रसार समीकरण बन जाता है

टर्मिनल स्थिति अब प्रारंभिक शर्त बन गई है

जहां H(x) हेविसाइड स्टेप फ़ंक्शन है। हेविसाइड फ़ंक्शन एस, टी समन्वय प्रणाली में सीमा डेटा के प्रवर्तन से मेल खाता है जिसके लिए टी = टी की आवश्यकता होती है,

S, K > 0 दोनों को मानते हुए। इस धारणा के साथ, यह x = 0 के अपवाद के साथ, वास्तविक संख्याओं में सभी x पर अधिकतम फ़ंक्शन के बराबर है। 'अधिकतम' फ़ंक्शन और हेविसाइड फ़ंक्शन के बीच उपरोक्त समानता है वितरण की भावना क्योंकि यह x = 0 के लिए मान्य नहीं है। सूक्ष्म होते हुए भी, यह महत्वपूर्ण है क्योंकि हेविसाइड फ़ंक्शन को x = 0 पर परिमित होने की आवश्यकता नहीं है, या यहां तक ​​कि उस मामले के लिए परिभाषित भी नहीं किया गया है। x = 0 पर हेविसाइड फ़ंक्शन के मान पर अधिक जानकारी के लिए, हेविसाइड स्टेप फ़ंक्शन लेख में शून्य तर्क अनुभाग देखें।

प्रारंभिक मान फ़ंक्शन, u(x, 0) दिए गए प्रसार समीकरण को हल करने के लिए मानक कनवल्शन विधि का उपयोग करते हुए, हमारे पास है

जो, कुछ हेरफेर के बाद, उपज देता है

कहाँ मानक सामान्य संचयी वितरण फ़ंक्शन है और

ये वही समाधान हैं (समयानुवाद तक) जो 1976 में फिशर ब्लैक द्वारा प्राप्त किए गए थे।[6] वापस लाया जा रहा चरों के मूल सेट से ब्लैक-स्कोल्स समीकरण का उपर्युक्त समाधान प्राप्त होता है।

एसिम्प्टोटिक स्थिति को अब महसूस किया जा सकता है।

जो मूल निर्देशांक पर वापस लौटने पर केवल S देता है।


संदर्भ

  1. Øksendal, Bernt (1998). "Option Pricing". Stochastic Differential Equations : An Introduction with Applications (5th ed.). Berlin: Springer. pp. 266–283. ISBN 3-540-63720-6.
  2. Hull, John C. (2008). विकल्प, वायदा और अन्य डेरिवेटिव (7 ed.). Prentice Hall. ISBN 978-0-13-505283-9.
  3. Shreve, Steven (2004). वित्त II के लिए स्टोकेस्टिक कैलकुलस (1st ed.). Springer. pp. 268–272. ISBN 0-387-40101-6.
  4. Wilmott, Paul; Howison, Sam; Dewynne, Jeff (1995). "Finite-difference Methods". वित्तीय डेरिवेटिव का गणित. Cambridge University Press. pp. 135–164. ISBN 0-521-49789-2.
  5. Chan, Raymond (2021-07-03), Black-Scholes Equations (PDF)
  6. See equation (16) in Black, Fischer S. (1976). "The Pricing of Commodity Contracts". Journal of Financial Economics. 3 (1–2): 167–179. doi:10.1016/0304-405X(76)90024-6.