संवेग मानचित्र
गणित में, विशेष रूप से सहानुभूति ज्यामिति में, संवेग मानचित्र (या, गलत व्युत्पत्ति विज्ञान द्वारा, संवेग मानचित्र[1]) सहानुभूति मैनिफोल्ड पर झूठ समूह के हैमिल्टनियन कार्रवाई ग्रुप एक्शन (गणित) से जुड़ा उपकरण है, जिसका उपयोग एक्शन के लिए संरक्षित मात्राओं का निर्माण करने के लिए किया जाता है। संवेग मानचित्र रैखिक और कोणीय संवेग की शास्त्रीय धारणाओं को सामान्यीकृत करता है। यह सिंपलेक्टिक मैनिफ़ोल्ड के विभिन्न निर्माणों में आवश्यक घटक है, जिसमें सिंपलेक्टिक (मार्सडेन-वेनस्टीन) भागफल, नीचे चर्चा की गई है, और सिंपलेक्टिक कट्स और सिंपलेक्टिक योग शामिल हैं।
औपचारिक परिभाषा
मान लीजिए कि M सहानुभूतिपूर्ण रूप ω वाला मैनिफोल्ड है। मान लीजिए कि झूठ समूह जी, एम पर लक्षणरूपता के माध्यम से कार्य करता है (अर्थात, जी में प्रत्येक जी की क्रिया ω को संरक्षित करती है)। होने देना G का झूठ बीजगणित हो, इसका दोहरा स्थान, और
दोनों के बीच जोड़ी. कोई भी ξ में एम पर सदिश क्षेत्र ρ(ξ) प्रेरित करता है जो ξ की अतिसूक्ष्म क्रिया का वर्णन करता है। सटीक होने के लिए, M वेक्टर में बिंदु x पर है
कहाँ घातीय मानचित्र (झूठ सिद्धांत) और है एम पर जी-क्रिया को दर्शाता है।[2] होने देना इस सदिश क्षेत्र के आंतरिक उत्पाद को ω से निरूपित करें। चूँकि G लक्षणात्मकता द्वारा कार्य करता है, यह उसी का अनुसरण करता है बंद और सटीक अंतर रूप है (सभी ξ के लिए)। ).
लगता है कि न केवल बंद है बल्कि सटीक भी है, इसलिए किसी समारोह के लिए . यदि यह बात कायम रहती है, तो कोई इसे चुन सकता है नक्शा बनाने के लिए रैखिक. (M, ω) पर G-क्रिया के लिए संवेग मानचित्र मानचित्र है ऐसा है कि
सभी के लिए ξ में . यहाँ M से 'R' तक का फलन परिभाषित है . संवेग मानचित्र को एकीकरण के योगात्मक स्थिरांक (प्रत्येक जुड़े घटक पर) तक विशिष्ट रूप से परिभाषित किया गया है।
एक -एक सिंपलेक्टिक मैनिफोल्ड पर कार्रवाई यदि यह सहानुभूतिपूर्ण है और यदि कोई संवेग मानचित्र मौजूद है तो इसे हैमिल्टनियन कहा जाता है।
एक गति मानचित्र की भी अक्सर आवश्यकता होती है-समतुल्य, जहां जी कार्य करता है सहसंयुक्त क्रिया के माध्यम से, और कभी-कभी इस आवश्यकता को हैमिल्टनियन समूह क्रिया की परिभाषा में शामिल किया जाता है। यदि समूह सघन या अर्धसरल है, तो संवेग मानचित्र को सहसंयुक्त समतुल्य बनाने के लिए एकीकरण के स्थिरांक को हमेशा चुना जा सकता है। हालाँकि, सामान्य तौर पर मानचित्र को समतुल्य बनाने के लिए सह-संयुक्त क्रिया को संशोधित किया जाना चाहिए (उदाहरण के लिए यूक्लिडियन समूह के लिए यह मामला है)। यह संशोधन 1-समूह सह-समरूपता द्वारा समूह पर मूल्यों के साथ किया गया है , जैसा कि सबसे पहले सौरियाउ (1970) द्वारा वर्णित है।
संवेग मानचित्रों के उदाहरण
सर्कल की हैमिल्टनियन कार्रवाई के मामले में , झूठ बीजगणित द्वैत स्वाभाविक रूप से पहचाना जाता है , और संवेग मानचित्र केवल हैमिल्टनियन फ़ंक्शन है जो वृत्त क्रिया उत्पन्न करता है।
एक और शास्त्रीय मामला तब घटित होता है जब का कोटैंजेंट बंडल है और घूर्णन और अनुवाद द्वारा उत्पन्न यूक्लिडियन समूह है। वह है, छह-आयामी समूह है, जिसका अर्धप्रत्यक्ष उत्पाद है और . संवेग मानचित्र के छह घटक तीन कोणीय संवेग और तीन रैखिक संवेग हैं।
होने देना चिकनी कई गुना हो और चलो प्रक्षेपण मानचित्र के साथ इसका कोटैंजेंट बंडल बनें . होने देना टॉटोलॉजिकल एक-रूप|टॉटोलॉजिकल 1-फॉर्म को निरूपित करें . कल्पना करना पर कार्य करता है . की प्रेरित कार्रवाई सिंपलेक्टिक मैनिफोल्ड पर , द्वारा दिए गए के लिए गति मानचित्र के साथ हैमिल्टनियन है सभी के लिए . यहाँ वेक्टर क्षेत्र के आंतरिक उत्पाद को दर्शाता है , की अतिसूक्ष्म क्रिया , 1-रूप के साथ .
नीचे उल्लिखित तथ्यों का उपयोग गति मानचित्रों के अधिक उदाहरण उत्पन्न करने के लिए किया जा सकता है।
गति मानचित्रों के बारे में कुछ तथ्य
होने देना लाई बीजगणित के साथ लाई समूह बनें , क्रमश।
- होने देना सहसंयुक्त कक्षा बनें। फिर वहाँ पर अद्वितीय सहानुभूतिपूर्ण संरचना मौजूद है ऐसा समावेशन मानचित्र गति मानचित्र है.
- होने देना सिंपलेक्टिक मैनिफोल्ड पर कार्य करें साथ कार्रवाई के लिए गति मानचित्र, और झूठ समूह समरूपता हो, जो क्रिया को प्रेरित करती हो पर . फिर की कार्रवाई पर हैमिल्टनियन भी है, गति मानचित्र द्वारा दिया गया है , कहाँ का दोहरा मानचित्र है ( के पहचान तत्व को दर्शाता है ). विशेष रुचि का मामला है जब का झूठ उपसमूह है और समावेशन मानचित्र है.
- होने देना हैमिल्टनियन बनें -कई गुना और हैमिल्टनियन -कई गुना. फिर की स्वाभाविक क्रिया पर हैमिल्टनियन है, गति मानचित्र के साथ दो गति मानचित्रों का सीधा योग है और . यहाँ , कहाँ प्रक्षेपण मानचित्र को दर्शाता है।
- होने देना हैमिल्टनियन बनें -कई गुना, और का उपमान के अंतर्गत अपरिवर्तनीय इस प्रकार कि सिम्प्लेक्सिक फॉर्म का प्रतिबंध पर को गैर पतित है. यह सिम्पलेक्सिक संरचना प्रदान करता है प्राकृतिक तरीके से. फिर की कार्रवाई पर हैमिल्टनियन भी है, गति मानचित्र के साथ समावेशन मानचित्र की संरचना का गति मानचित्र.
सांकेतिक भागफल
मान लीजिए कि सिंपलेक्टिक मैनिफोल्ड (एम, ω) पर ली समूह जी की कार्रवाई हैमिल्टनियन है, जैसा कि ऊपर परिभाषित किया गया है, समतुल्य गति मानचित्र के साथ . हैमिल्टनियन स्थिति से, यह इस प्रकार है G के अंतर्गत अपरिवर्तनीय है।
अब मान लें कि G स्वतंत्र रूप से और ठीक से कार्य करता है . इसका तात्पर्य यह है कि 0 नियमित मान है , इसलिए और इसका भागफल स्थान (टोपोलॉजी) दोनों चिकने मैनिफोल्ड हैं। भागफल को M से सहानुभूतिपूर्ण रूप प्राप्त होता है; अर्थात्, भागफल पर अद्वितीय सहानुभूतिपूर्ण रूप होता है जिसका पुलबैक (विभेदक ज्यामिति) होता है ω के प्रतिबंध के बराबर है . इस प्रकार, भागफल सिम्प्लेक्टिक मैनिफोल्ड है, जिसे मार्सडेन-वेनस्टीन भागफल कहा जाता है। (मार्सडेन & वीन्स्टीन 1974) , सिंपलेक्टिक भागफल, या एम का जी द्वारा सिंपलेक्टिक कमी और निरूपित किया जाता है . इसका आयाम M के आयाम को घटाकर G के आयाम के दोगुने के बराबर है।
अधिक आम तौर पर, यदि जी स्वतंत्र रूप से कार्य नहीं करता है (लेकिन फिर भी ठीक से), तो (सजामार & लर्मन 1991) पता चला है कि स्तरीकृत सहानुभूति स्थान है, यानी स्तरों पर संगत सहानुभूति संरचनाओं के साथ स्तरीकृत स्थान।
सतह पर समतल कनेक्शन
अंतरिक्ष तुच्छ बंडल पर कनेक्शन की सतह पर अनंत आयामी सहानुभूतिपूर्ण रूप होता है
गेज समूह संयुग्मन द्वारा कनेक्शन पर कार्य करता है . पहचान करना एकीकरण युग्मन के माध्यम से. फिर नक्शा
जो अपनी वक्रता के लिए कनेक्शन भेजता है वह कनेक्शन पर गेज समूह की कार्रवाई के लिए क्षण मानचित्र है। विशेष रूप से फ्लैट कनेक्शन मॉड्यूलो गेज तुल्यता का मॉड्यूल स्पेस सिम्प्लिक्टिक रिडक्शन द्वारा दिया गया है।
यह भी देखें
- जीआईटी भागफल
- परिमाणीकरण कमी के साथ चलता है।
- पॉइसन-लाई समूह
- टोरिक मैनिफ़ोल्ड
- ज्यामितीय यांत्रिकी
- किरवान मानचित्र
- कोस्टेंट की उत्तलता प्रमेय
टिप्पणियाँ
- ↑ Moment map is a misnomer and physically incorrect. It is an erroneous translation of the French notion application moment. See this mathoverflow question for the history of the name.
- ↑ The vector field ρ(ξ) is called sometimes the Killing vector field relative to the action of the one-parameter subgroup generated by ξ. See, for instance, (Choquet-Bruhat & DeWitt-Morette 1977)
संदर्भ
- जे.-एम. सौरियाउ, स्ट्रक्चर डेस सिस्टम्स डायनामिक्स, मैट्रिसेस डी मैथेमेटिक्स, डुनोद, पेरिस, 1970 ISSN 0750-2435.
- एस. के. डोनाल्डसन और पी. बी. क्रोनहाइमर, फोर-मैनिफोल्ड्स की ज्यामिति, ऑक्सफ़ोर्ड विज्ञान प्रकाशन, 1990 ISBN 0-19-850269-9.
- डूसा मैकडफ़ और डाइटमार सलामोन, सिम्पलेक्टिक टोपोलॉजी का परिचय, ऑक्सफोर्ड साइंस पब्लिकेशन, 1998 ISBN 0-19-850451-9.
- चॉक्वेट-ब्रुहट, Yvonne; डेविट-मोरेटे, Cécile (1977), विश्लेषण, मैनिफोल्ड्स और भौतिकी, एम्स्टर्डम: Elsevier, ISBN 978-0-7204-0494-4
{{citation}}
: Invalid|url-access=पंजीकरण
(help) - ओर्टेगा, जुआन पाब्लो; रतिउ, ट्यूडर एस. (2004). संवेग मानचित्र और हैमिल्टनियन कमी. गणित में प्रगति. Vol. 222. बिरखौसर बोस्टन. ISBN 0-8176-4307-9.
- ऑडिन, मिशेल (2004), सिंपलेक्टिक मैनिफ़ोल्ड्स पर टोरस क्रियाएँ, गणित में प्रगति, vol. 93 (दूसरा संशोधित ed.), बिरखौसर, ISBN 3-7643-2176-8
- Guillemin, Victor; स्टर्नबर्ग, Shlomo (1990), भौतिकी में सिम्पलेक्टिक तकनीकें (दूसरा ed.), कैम्ब्रिज यूनिवर्सिटी प्रेस, ISBN 0-521-38990-9
- Woodward, Chris (2010), Moment maps and geometric invariant theory, Les cours du CIRM, vol. 1, EUDML, pp. 55–98, arXiv:0912.1132, Bibcode:2009arXiv0912.1132W
- Bruguières, Alain (1987), "Propriétés de convexité de l'application moment" (PDF), Astérisque, Séminaire Bourbaki, 145–146: 63–87
- Marsden, Jerrold; Weinstein, Alan (1974), "Reduction of symplectic manifolds with symmetry", Reports on Mathematical Physics, 5 (1): 121–130, Bibcode:1974RpMP....5..121M, doi:10.1016/0034-4877(74)90021-4
- Sjamaar, Reyer; Lerman, Eugene (1991), "Stratified symplectic spaces and reduction", Annals of Mathematics, 134 (2): 375–422, doi:10.2307/2944350, JSTOR 2944350