गुणक आदर्श

From Vigyanwiki
Revision as of 22:39, 21 July 2023 by alpha>Ajays

क्रमविनिमेय बीजगणित में, जटिल संख्या बीजगणितीय विविधता और वास्तविक संख्या सी पर आदर्श (रिंग सिद्धांत) के शीफ (गणित) से जुड़े गुणक आदर्श में (स्थानीय रूप से) फ़ंक्शन एच शामिल होते हैं जैसे कि

स्थानीय रूप से एकीकृत फ़ंक्शन है, जहां fi आदर्श के स्थानीय जनरेटर का सीमित सेट हैं। गुणक आदर्शों को स्वतंत्र रूप से प्रस्तुत किया गया था Nadel (1989) (जिन्होंने आदर्शों के बजाय जटिल विविधताओं पर काम किया) और Lipman (1993), जिन्होंने इन्हें संयुक्त आदर्श कहा।

सर्वेक्षण लेखों में गुणक आदर्शों पर चर्चा की गई है Blickle & Lazarsfeld (2004), Siu (2005), और Lazarsfeld (2009).

बीजगणितीय ज्यामिति

बीजगणितीय ज्यामिति में, प्रभावी का गुणक आदर्श -विभाजक (बीजगणितीय ज्यामिति) डी के भिन्नात्मक भागों से आने वाली विलक्षणताओं को मापता है। गुणक आदर्शों को अक्सर कोडैरा लुप्त प्रमेय और कावामाता-विहवेग लुप्त प्रमेय जैसे लुप्त प्रमेयों के साथ मिलकर लागू किया जाता है।

मान लीजिए कि X सहज जटिल किस्म है और D प्रभावी किस्म है -इस पर विभाजक. होने देना D का लॉग रिज़ॉल्यूशन हो (उदाहरण के लिए, हिरोनका का रिज़ॉल्यूशन)। D का गुणक आदर्श है

कहाँ सापेक्ष विहित भाजक है: . यह का आदर्श पूल है . यदि D अभिन्न है, तो .

यह भी देखें

संदर्भ