गुरुत्वीय इंस्टेंटन

From Vigyanwiki
Revision as of 09:38, 22 July 2023 by alpha>Aashvani

गणितीय भौतिकी और विभेदक ज्यामिति में, गुरुत्वीय इंस्टेंटन चार-आयामी पूर्ण रीमैनियन मैनिफोल्ड है जो वैक्यूम आइंस्टीन समीकरणों को संतुष्ट करता है। उनका नाम इसलिए रखा गया है क्योंकि वे यांग-मिल्स सिद्धांत में इंस्टेंटन के गुरुत्वाकर्षण के क्वांटम सिद्धांतों के अनुरूप हैं। स्व-दोहरी यांग-मिल्स इंस्टेंटन के साथ इस सादृश्य के अनुसार, गुरुत्वीय इंस्टेंटन को सामान्यतः बड़ी दूरी पर चार आयामी यूक्लिडियन अंतरिक्ष के जैसे दिखने और स्व-दोहरी रीमैन टेंसर के रूप में माना जाता है। गणितीय रूप से, इसका तात्पर्य यह है कि वे स्थानीय रूप से यूक्लिडियन स्थान (या संभवतः असम्बद्ध रूप से स्थानीय रूप से समतल) हाइपरकेहलर 4-मैनिफोल्ड्स, और इस अर्थ में, वे आइंस्टीन मैनिफोल्ड्स के विशेष उदाहरण हैं। भौतिक दृष्टिकोण से, गुरुत्वीय इंस्टेंटन लोरेंत्ज़ियन, मीट्रिक के विपरीत, सकारात्मक-निश्चित के साथ वैक्यूम आइंस्टीन समीकरणों का गैर-विलक्षण समाधान है।

गुरुत्वीय इंस्टेंटन की मूल अवधारणा के कई संभावित सामान्यीकरण हैं: उदाहरण के लिए, कोई गुरुत्वीय इंस्टेंटन को गैर-शून्य ब्रह्माण्ड संबंधी स्थिरांक या रीमैन टेंसर की अनुमति दे सकता है जो स्व-दोहरी नहीं है। कोई उस सीमा नियम में भी शिथिलता दे सकता है कि मीट्रिक स्पर्शोन्मुख रूप से यूक्लिडियन है।

गुरुत्वीय इंस्टेंटन के निर्माण के लिए कई विधियाँ हैं, जिनमें गिबन्स-हॉकिंग अंसत्ज़, ट्विस्टर सिद्धांत और हाइपरकेहलर भागफल निर्माण सम्मिलित हैं।

परिचय

गुरुत्वीय इंस्टेंटन दिलचस्प हैं, क्योंकि वे गुरुत्वाकर्षण के परिमाणीकरण में अंतर्दृष्टि प्रदान करते हैं। उदाहरण के लिए, स्थानीय रूप से यूक्लिडियन मेट्रिक्स की आवश्यकता होती है क्योंकि वे सकारात्मक-क्रिया अनुमान का पालन करते हैं; नीचे दी गई असीमित क्रियाएं पथ अभिन्न सूत्रीकरण में विचलन पैदा करती हैं।

  • चार-आयामी काहलर मैनिफोल्ड|काहलर-आइंस्टीन मैनिफोल्ड में स्व-दोहरी रीमैन टेंसर है।
  • समान रूप से, स्व-दोहरी गुरुत्वाकर्षण इंस्टेंटन चार-आयामी पूर्ण हाइपरकेहलर मैनिफोल्ड है।
  • गुरुत्वाकर्षण इंस्टेंटन इंस्टेंटन|सेल्फ-डुअल यांग-मिल्स इंस्टेंटन के अनुरूप हैं।

रीमैन वक्रता टेंसर की संरचना के संबंध में, समतलता और आत्म-द्वंद्व से संबंधित कई भेद किए जा सकते हैं। इसमे सम्मिलित है:

  • आइंस्टीन (गैर-शून्य ब्रह्माण्ड संबंधी स्थिरांक)
  • रिक्की फ्लैटनेस (लुप्त रिक्की टेंसर)
  • अनुरूप समतलता (वेइल टेंसर का लुप्त होना)
  • आत्म-द्वंद्व
  • आत्म-द्वंद्व विरोधी
  • अनुरूप रूप से आत्म-दोहरा
  • अनुरूप रूप से आत्म-द्वैत विरोधी

वर्गीकरण

'सीमा स्थितियों' को निर्दिष्ट करके, अर्थात गैर-सघन रीमैनियन मैनिफोल्ड पर मीट्रिक 'अनंत पर' के एसिम्प्टोटिक्स को निर्दिष्ट करके, गुरुत्वाकर्षण इंस्टेंटन को कुछ वर्गों में विभाजित किया जाता है, जैसे एसिम्प्टोटिक रूप से स्थानीय रूप से यूक्लिडियन समिष्ट (एएलई समिष्ट), एसिम्प्टोटिक रूप से स्थानीय रूप से समतल समिष्ट (एएलएफ) रिक्त समिष्ट) होता है।

उन्हें आगे इस आधार पर चित्रित किया जा सकता है कि क्या रीमैन टेन्सर स्व-दोहरी है, क्या वेइल टेंसर स्व-दोहरी है, या नहीं; चाहे वे काहलर मैनिफोल्ड्स हों या नहीं; और विभिन्न विशिष्ट वर्ग, जैसे कि यूलर विशेषता, हिरज़ेब्रुक हस्ताक्षर (पोंट्रीगिन वर्ग), रारिटा-श्विंगर सूचकांक (स्पिन-3/2 सूचकांक), या सामान्यतः चेर्न वर्ग है। स्पिन संरचना का समर्थन करने की क्षमता (अर्थात निरंतर डायराक स्पिनरों को अनुमति देना) और आकर्षक विशेषता है।

उदाहरणों की सूची

एगुची एट अल. गुरुत्वीय तात्कालिकता के कई उदाहरण सूचीबद्ध करें।[1] इनमें अन्य सम्मिलित हैं:

* ते एगुची - हैनसन इंस्टेंटन , नीचे दिया गया।

  • Taub–NUT स्पेस|Taub–NUT समाधान, नीचे दिया गया है।
  • जटिल प्रक्षेप्य तल पर फ़ुबिनी-अध्ययन मीट्रिक [2] ध्यान दें कि जटिल प्रक्षेप्य तल अच्छी तरह से परिभाषित डिराक स्पिनरों का समर्थन नहीं करता है। अर्थात यह स्पिन संरचना नहीं है. हालाँकि, इसे स्पिन समूह संरचना दी जा सकती है।
  • पृष्ठ स्थान , दो जटिल प्रक्षेप्य विमानों के सीधे योग पर घूर्णन कॉम्पैक्ट मीट्रिक .
  • गिबन्स-हॉकिंग मल्टी-सेंटर मेट्रिक्स, नीचे दिए गए हैं।
  • टब-बोल्ट मीट्रिक और घूमने वाली ताब-बोल्ट मीट्रिक। बोल्ट मेट्रिक्स में मूल में बेलनाकार-प्रकार की समन्वय विलक्षणता होती है, नट मेट्रिक्स की तुलना में, जिसमें गोलाकार समन्वय विलक्षणता होती है। दोनों ही मामलों में, मूल बिंदु पर यूक्लिडियन निर्देशांक पर स्विच करके समन्वय विलक्षणता को हटाया जा सकता है।
  • K3 सतह.
  • लेंस रिक्त स्थान सहित, असम्बद्ध रूप से स्थानीय रूप से यूक्लिडियन स्व-दोहरी मैनिफोल्ड्स , डायहेड्रल समूहचतुष्फलकीय समूह समूह, अष्टफलकीय समूह और इकोसाहेड्रल समूह के दोहरे आवरण। ध्यान दें कि एगुची-हैनसन इंस्टेंटन से मेल खाता है, जबकि उच्च k के लिए, द गिबन्स-हॉकिंग मल्टी-सेंटर मेट्रिक्स से मेल खाता है।

यह अधूरी सूची है; अन्य भी हैं.

उदाहरण

तीन-गोले S3 (समूह Sp(1) या SU(2) के रूप में देखा गया) पर बाएं-अपरिवर्तनीय 1-रूप का उपयोग करके नीचे गुरुत्वाकर्षण इंस्टेंटन समाधान लिखना सुविधाजनक होगा। इन्हें यूलर कोणों के संदर्भ में परिभाषित किया जा सकता है:

ध्यान दें कि के लिए चक्रीय है।

Taub-NUT मीट्रिक

एगुची-हैनसन मीट्रिक

एगुची-हैनसन स्थान को 2-गोले के कोटैंजेंट बंडल मीट्रिक द्वारा परिभाषित किया गया है . यह मीट्रिक है

कहाँ . यदि इसमें कोई गुरुत्वीय विलक्षणता#शंक्वाकार विलक्षणता नहीं है तो यह मीट्रिक हर जगह सुचारू है , . के लिए ऐसा होता है यदि की अवधि होती है , जो आर पर फ्लैट मीट्रिक देता है4; हालाँकि, के लिए ऐसा होता है यदि की अवधि होती है .

असम्बद्ध रूप से (अर्थात, सीमा में ) मीट्रिक जैसा दिखता है

जो सहजता से आर पर फ्लैट मीट्रिक के रूप में प्रतीत होता है4. हालाँकि, के लिए , जैसा कि हमने देखा है, इसकी सामान्य आवधिकता केवल आधी है। इस प्रकार मीट्रिक स्पर्शोन्मुख रूप से R है4पहचान के साथ , जो चक्रीय समूह|Z है2SO(4) का उपसमूह, R का घूर्णन समूह4. इसलिए, मीट्रिक को स्पर्शोन्मुख कहा जाता है आर/Z2.

अन्य समन्वय प्रणाली में परिवर्तन होता है, जिसमें मीट्रिक जैसा दिखता है

कहाँ

(ए = 0 के लिए, , और नए निर्देशांक इस प्रकार परिभाषित किए गए हैं: पहले परिभाषित करता है और फिर पैरामीटराइज़ करता है , और आर द्वारा3निर्देशांक , अर्थात। ).

नये निर्देशांक में, सामान्य आवधिकता है V की जगह कोई ले सकता है

कुछ n बिंदुओं के लिए , i = 1, 2..., n. यह बहु-केंद्र एगुची-हैनसन गुरुत्वाकर्षण इंस्टेंटन देता है, जो कोणीय निर्देशांक में सामान्य आवधिकता होने पर फिर से हर जगह सुचारू होता है (गुरुत्वाकर्षण विलक्षणता#शंक्वाकार विलक्षणता से बचने के लिए)। स्पर्शोन्मुख सीमा () सभी को लेने के बराबर है शून्य पर, और निर्देशांक को वापस r में बदलकर, और , और पुनः परिभाषित करना , हमें स्पर्शोन्मुख मीट्रिक मिलती है

ये है आर/Zn = सी2/Zn, क्योंकि यह आर है4कोणीय निर्देशांक के साथ द्वारा प्रतिस्थापित , जिसकी गलत आवधिकता है ( के अतिरिक्त ). दूसरे शब्दों में, यह आर है4के अंतर्गत पहचाना गया , या, समकक्ष, सी2z के अंतर्गत पहचाना गयाi ~ zi i = 1, 2 के लिए.

निष्कर्ष निकालने के लिए, बहु-केंद्र एगुची-हैनसन ज्यामिति काहलर मैनिफोल्ड है|काहलर रिक्की फ्लैट ज्यामिति जो असममित रूप से 'सी' है2/Zn. कैलाबी-याउ मैनिफोल्ड|याउ के प्रमेय के अनुसार यह इन गुणों को संतुष्ट करने वाली एकमात्र ज्यामिति है। इसलिए, यह C की ज्यामिति भी है2/Zn इसके गुरुत्वाकर्षण विलक्षणता के बाद स्ट्रिंग सिद्धांत में कक्षीय #शंक्वाकार विलक्षणता को इसके विस्फोट (अर्थात, विरूपण) द्वारा सुचारू कर दिया गया है।[3]

गिबन्स-हॉकिंग मल्टी-सेंटर मेट्रिक्स

गिबन्स-हॉकिंग मल्टी-सेंटर मेट्रिक्स द्वारा दिए गए हैं[4][5]

जहां

यहाँ, मल्टी-टाउब-एनयूटी से युग्मित होता है, और समतल समिष्ट है, और और एगुची-हैनसन समाधान है (विभिन्न निर्देशांक में)।

गुरुत्वाकर्षण इंस्टेंटन के रूप में एफएलआरडब्ल्यू-मैट्रिक्स

2021 में यह पाया गया[6] कि यदि कोई अधिकतम सममित समिष्ट के वक्रता पैरामीटर सतत फलन के रूप में देखता है, तो आइंस्टीन-हिल्बर्ट क्रिया और गिबन्स-हॉकिंग-यॉर्क सीमा शब्द के योग के रूप में गुरुत्वाकर्षण क्रिया, बिंदु कण की हो जाती है। तब प्रक्षेपवक्र स्केल कारक है और वक्रता पैरामीटर को क्षमता के रूप में देखा जाता है। इस प्रकार प्रतिबंधित समाधानों के लिए सामान्य सापेक्षता टोपोलॉजिकल यांग-मिल्स सिद्धांत का रूप लेती है।

यह भी देखें

संदर्भ

  1. Eguchi, Tohru; Gilkey, Peter B.; Hanson, Andrew J. (1980). "गुरुत्वाकर्षण, गेज सिद्धांत और विभेदक ज्यामिति". Physics Reports. 66 (6): 213–393. Bibcode:1980PhR....66..213E. doi:10.1016/0370-1573(80)90130-1. ISSN 0370-1573.
  2. Eguchi, Tohru; Freund, Peter G. O. (1976-11-08). "क्वांटम ग्रेविटी और वर्ल्ड टोपोलॉजी". Physical Review Letters. 37 (19): 1251–1254. Bibcode:1976PhRvL..37.1251E. doi:10.1103/physrevlett.37.1251. ISSN 0031-9007.
  3. Douglas, Michael R.; Moore, Gregory (1996). "डी-ब्रेन्स, क्विवर्स और एएलई इंस्टेंटन". arXiv:hep-th/9603167.
  4. Hawking, S.W. (1977). "गुरुत्वीय तात्कालिकता". Physics Letters A. 60 (2): 81–83. Bibcode:1977PhLA...60...81H. doi:10.1016/0375-9601(77)90386-3. ISSN 0375-9601.
  5. Gibbons, G.W.; Hawking, S.W. (1978). "गुरुत्वाकर्षण बहु-इंस्टेंटन". Physics Letters B. 78 (4): 430–432. Bibcode:1978PhLB...78..430G. doi:10.1016/0370-2693(78)90478-1. ISSN 0370-2693.
  6. J.Hristov;. Quantum theory of -metrics its connection to Chern–Simons models and the theta vacuum structure of quantum gravity https://doi.org/10.1140/epjc/s10052-021-09315-1