गैलोज़ सिद्धांत का मौलिक प्रमेय

From Vigyanwiki
Revision as of 06:52, 1 August 2023 by Manidh (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणित में, गैलोज़ सिद्धांत का मौलिक प्रमेय वह परिणाम है जो किसी समुच्चय (गणित) के संबंध में कुछ ऐसे प्रकार के क्षेत्रों के विस्तार की संरचना का वर्णन करता है। जिसे एवरिस्ट गैलोज़ ने गैलोज़ सिद्धांत के विकास में सिद्ध किया था।

मौलिक रूप में यदि देखे तो इस प्रमेय का परिमाण किसी क्षेत्र के विस्तार को E F द्वारा दिया जाता है, जो कि परिमित विस्तार और गैलोइस विस्तार द्वारा परिभाषित किया जाता है, इसके मध्यवर्ती क्षेत्रों और इसके उपसमुच्चयों के बीच संचरण होता है, इस प्रकार गैलोइस समुच्चय किसी मध्यवर्ती क्षेत्र मुख्य रूप से क्षेत्र (गणित) K के संतोषजनक परिणाम FKE पर निर्भर करता हैं, उन्हें E का उपविस्तार '/एफ। भी कहा जाता है।

संचरण का स्पष्ट विवरण

परिमित विस्तारों के लिए उचित संचरण को स्पष्ट रूप से निम्नानुसार वर्णित किया जा सकता है।

  • गैल (E/F) के किसी भी उपसमुच्चय H के लिए, संबंधित निश्चित-बिंदु उपवलय, EH को दर्शाया गया है, इस प्रकार E के उन तत्वों का समुच्चय गणित कहते है, जो H में प्रत्येक स्वचालितता द्वारा निश्चित होते हैं।
  • E/F के किसी भी मध्यवर्ती क्षेत्र के के लिए, संबंधित उपसमुच्चय ऑट (E/K) है, अर्ताथ, गैल (E/F) में उन ऑटोमोर्फिज्म का सेट जो के प्रत्येक तत्व को ठीक करता है।

मौलिक प्रमेय के अनुसार, यह संचरण वन-टू-वन संचरण है, इस प्रकार यदि E/F गैलोज़ एक्सटेंशन पर निर्भर करता है। तो उदाहरण के लिए सबसे ऊपरी क्षेत्र E, गैल (E/F) के उप-समुच्चय से मेल खाता है, और आधार क्षेत्र F पूरे समुच्चय (गणित) गैल (E/F) से मेल खाता है।

नोटेशन गैल(E/F) का उपयोग केवल गैलोइस एक्सटेंशन के लिए किया जाता है। यदि E/F गैलोज़ के समान होता है, तो गैल(E/F) = ऑट(E/F) के समान होगा। इसका कारण यह हैं यदि E/F गैलोज़ नहीं है, तो संचरण केवल इंजेक्शन अपितु विशेषण नहीं मानचित्र को में देता है, और इसके विपरीत दिशा में विशेषण अपितु विशेषण मानचित्र नहीं देता हैं। विशेष रूप से, यदि E/F गैलोइस नहीं है, तो F ऑट (E/F) के किसी भी उपसमुच्चय का निश्चित क्षेत्र नहीं है।

संचरण के गुण

संचरण में निम्नलिखित उपयोगी गुण हैं।

  • यह समावेश-विपरीत है। इस प्रकार किसी उपसमुच्चय का समावेश H1 ⊆ H2 इस प्रकार हैं, यदि क्षेत्र EH1 ⊇ EH2 को इसमें सम्मिलित करने पर ही मान्य होता है तभी यह इसे उपयोग करता है।
  • विस्तार की डिग्री, समावेशन-उलटने वाली संपत्ति के अनुरूप तरीके से, समुच्चयों के आदेशों से संबंधित होती है। विशेष रूप से, यदि H, गैल(E/F) का उपसमुच्चय है, तो |H| = [E:EH] और |Gal(E/F)|/|H| = [EH:F] के समान होता हैं।
  • क्षेत्र EHF का सामान्य विस्तार है या इसके समकक्ष, गैलोइस एक्सटेंशन, क्योंकि अलग करने योग्य एक्सटेंशन का कोई भी उप-विस्तार अलग किया जा सकता है, इसका कारण यह हैं यदि H, गैल (E/F) का सामान्य उपसमुच्चय है। इस स्थिति में, गैल (E/F) के तत्वों का EH गैल(E)H/F) तक प्रतिबंध के बीच समुच्चय समरूपता उत्पन्न करता है, और इसका भागफल समुच्चय Gal(E/F)/H के समान होता हैं।

उदाहरण 1

उपसमुच्चयों और उपक्षेत्रों की जाली

इसके क्षेत्र पर विचार करें

तब से K का निर्माण आधार क्षेत्र से किया गया है, जिसके लिए इसे संलग्न करके 2, तब 3, प्रत्येक तत्व K को इस प्रकार लिखा जा सकता है:

यह गैलोइस समुच्चय है के ऑटोमोर्फिज्म सम्मिलित किया जाता हैं, इसका कारण यह हैं कि K जो a द्वारा ठीक करते हैं, ऐसी ऑटोमोर्फिज्म अवश्य भेजनी चाहिए 2 को 2 या 2, और भेज दें 3 को 3 या 3, क्योंकि वे किसी भी अप्रासंगिक बहुपद की मूलों को क्रमबद्ध करते हैं। इस प्रकार हम यह कह सकते हैं कि f आदान-प्रदान 2 और 2, इसलिए

और g आदान-प्रदान 3 और 3 के लिए करते हैं, इसलिए

ये स्पष्ट रूप से ऑटोमोर्फिज्म हैं K, इसके जोड़ और गुणा करत हैं। इसकी पहचान ऑटोमोर्फिज़्म e से की जाती हैं, जो प्रत्येक तत्व और उसकी संरचना को f और g से ठीक करता है, जो दोनों मूलकों पर प्राप्त होने वाले संकेतो को परिवर्तित करता है:

चूँकि गैलोज़ समुच्चय का क्रम क्षेत्र विस्तार की डिग्री के बराबर है, इस कारण के समान होता हैं, आगे कोई स्वप्रतिरूपण नहीं हो सकता:

जो क्लेन चार-समुच्चय के समरूपी है। इसके पांच उपसमुच्चय आधार के बीच के मध्यवर्ती क्षेत्रों के और विस्तार K के अनुरूप हैं।

  • स्यूडो उपसमुच्चय {1} संपूर्ण एक्सटेंशन क्षेत्र K से मेल खाता है।
  • सम्पूर्ण समुच्चय G आधार क्षेत्र से मेल खाता है।
  • उपसमुच्चय {1, f} उपक्षेत्र से मेल खाता है तब से f3 ठीक करता है।
  • उपसमुच्चय {1, g} उपक्षेत्र से मेल खाता है तब से g2 ठीक करता है।
  • उपसमुच्चय {1, fg} उपक्षेत्र से मेल खाता है तब से fg6 ठीक करता है।

उदाहरण 2

उपसमुच्चयों और उपक्षेत्रों की जाली

निम्नलिखित सबसे साधारण स्थिति है, जहां गैलोज़ समुच्चय एबेलियन नहीं है।

आइज़ेंस्टीन की कसौटी के विभाजन क्षेत्र K पर विचार करें, जहाँ का मान से ऊपर हैं, इस प्रकार के समान हैं। जहां θ 2 का घनमूल है, और ω 1 का घनमूल है, अपितु स्वयं 1 इसका कारण नहीं हैं। यदि हम जटिल संख्याओं के अंदर K पर विचार करते हैं, तो हम ले सकते हैं, इस प्रकार 2 का वास्तविक घनमूल, और चूँकि ω में न्यूनतम बहुपद है, इस प्रकार विस्तृति डिग्री है:, के साथ -आधार जैसा कि पिछले उदाहरण में है। इसलिए गैलोज़ समुच्चय इसमें छह तत्व हैं, जो तीन मूलों के क्रमपरिवर्तन द्वारा निर्धारित होते हैं :

चूँकि यहाँ केवल 3! = 6 हैं, ऐसे क्रमपरिवर्तन, G को तीन वस्तुओं के सभी क्रमपरिवर्तन के सममित समुच्चय के लिए समरूपी होना चाहिए। इस प्रकार समुच्चय को दो ऑटोमोर्फिज्म f और g द्वारा परिभाषित किया जा सकता है:

और , संबंधी का पालन करते हैं, जिसके क्रमपरिवर्तन के रूप में उनका प्रभाव क्रमपरिवर्तन चक्र संकेतन में है : इसके अतिरिक्त, G को जटिल संयुग्म मैपिंग के रूप में भी माना जा सकता है।

G के उपसमुच्चय और संगत उपक्षेत्र इस प्रकार हैं:

  • हमेशा की तरह, स्यूडो समुच्चय {1} संपूर्ण क्षेत्र K से मेल खाता है, जबकि संपूर्ण समुच्चय G आधार क्षेत्र से मेल खाता है।
  • क्रम 3 का अद्वितीय उपसमुच्चय, , उपक्षेत्र से मेल खाता है, जहाँ डिग्री दो का मान चूंकि उपसमुच्चय में G में उपसमुच्चय दो का सूचकांक है: अर्ताथ। के समान होने के साथ ही, यह उपसमुच्चय सामान्य है, इसलिए उपक्षेत्र सामान्य है, जिसका विभाजन क्षेत्र होने के नाते . आधार क्षेत्र पर इसका गैलोज़ समुच्चय भागफल समुच्चय है। इस प्रकार, जहां [G] G प्रारूपों के लिए H के सहसमुच्चय को दर्शाता है, अर्थात इसका एकमात्र गैर-स्यूडो ऑटोमोर्फिज्म जटिल संयुग्मन G है।
  • क्रम 2 के तीन उपसमुच्चय और हैं, जो क्रमशः इन उपक्षेत्रों के अनुरूप हैं। इस प्रकार इन उपक्षेत्रों की डिग्री 3 से अधिक है, चूँकि उपसमुच्चयों में G में उपसमुच्चय 3 का सूचकांक है। जिसके लिए उपसमुच्चय G में सामान्य उपसमुच्चय नहीं हैं, इसलिए उपक्षेत्र गैलोज़ या सामान्य विस्तार नहीं हैं, वास्तव में, प्रत्येक उपक्षेत्र में मूलों में से केवल ही होता है, इसलिए किसी के पास कोई गैर-स्यूडो ऑटोमोर्फिज्म नहीं है।

उदाहरण 3

इस उदाहरण के अनुसार के लिए अनिश्चित λ में तर्कसंगत कार्यों का क्षेत्र बनाये जाते हैं, और ऑटोमोर्फिज्म के समुच्चय पर विचार करते हैं:

यहां हम ऑटोमोर्फिज्म को से दर्शाते हैं, इसके मान से जिससे कि का मान प्राप्त हो सकते। यह समुच्चय समरूपी है, इस प्रकार क्रॉस-अनुपात अनहार्मोनिक समुच्चय और क्लेन चार-समुच्चय या छह क्रॉस-अनुपात हैं। इस प्रकार का निश्चित क्षेत्र होता हैं, जिससे कि का मान प्राप्त होता हैं।

यदि का उपसमुच्चय है, इसके लिए पुनः बहुपद के गुणांक

का निश्चित क्षेत्र उत्पन्न करते हैं। इस प्रकार गैलोइस संचरण का तात्पर्य यह है कि प्रत्येक उपक्षेत्र इस प्रकार से बनाये जा सकते है। उदाहरण के लिए , निश्चित क्षेत्र है। और यदि तो निश्चित क्षेत्र है। जिसका निश्चित क्षेत्र आधार क्षेत्र है, जहाँ j J-अपरिवर्तनीय वैकल्पिक अभिव्यक्ति है। इस प्रकार j-मॉड्यूलर लैम्ब्डा फ़ंक्शन के संदर्भ में लिखा गया अपरिवर्तनीयता को परिभाषित करता हैं:

प्रत्येक प्लेटोनिक ठोस समरूपता समुच्चयों के लिए समान उदाहरण बनाए जा सकते हैं, क्योंकि इनमें प्रक्षेप्य रेखा पर भी इस प्रकार की क्रियाएं होती हैं, जहाँ और इसलिए से आगे रहता हैं।

अनुप्रयोग

प्रमेय E/F के मध्यवर्ती क्षेत्रों को परिमित समुच्चय के संदर्भ में वर्गीकृत करता है। इस प्रकार मध्यवर्ती क्षेत्रों और उपसमुच्चयों के बीच यह अनुवाद महत्वपूर्ण है, यह दिखाने के लिए कि सामान्य क्विंटिक समीकरण रेडिकल द्वारा हल करने योग्य नहीं है, इसके लिए एबेल-रफिनी प्रमेय देखें। इस प्रकार सबसे पहले मौलिक विस्तार के गैलोज़ समुच्चयों को निर्धारित करता है, जहाँ फॉर्म F (α) का एक्सटेंशन प्राप्त होता हैं। जहाँ α F के कुछ तत्व की n-वें मूल को प्रदर्शित करते है, और फिर मौलिक प्रमेय का उपयोग यह दिखाने के लिए करता है कि इसे हल करने के योग्य एक्सटेंशन सॉल्व करने योग्य समुच्चयों के अनुरूप हैं।

यह मुख्य रूप से कुमेर सिद्धांत और वर्ग क्षेत्र सिद्धांत जैसे सिद्धांत मौलिक प्रमेय पर आधारित हैं।

अनंत स्थिति

अनंत बीजगणितीय विस्तार को देखते हुए हम अभी भी इसे गैलोज़ के रूप में परिभाषित कर सकते हैं, इसका कारण इस प्रका हैं यदि यह सामान्य और अलग करने योग्य है, तो अनंत स्थिति में जिस समस्या का सामना करना पड़ता है वह यह है कि मौलिक प्रमेय में आपत्ति मान्य नहीं है क्योंकि हमें सामान्यतः बहुत अधिक उपसमुच्चय प्राप्त होते हैं। इसके अधिक सटीक रूप से यदि हम प्रत्येक उपसमुच्चय को लें तो हम सामान्यतः दो अलग-अलग उपसमुच्चय पा सकते हैं, जो समान मध्यवर्ती क्षेत्र को ठीक करते हैं। इसलिए हम गैलोज़ समुच्चय पर टोपोलॉजिकल स्पेस पेश करके इसमें संशोधन करते हैं।

इस प्रकार गैलोइस एक्सटेंशन (संभवतः अनंत) बनें और रहने दें विस्तार का गैलोज़ समुच्चय बनाते हैं।


सभी परिमित मध्यवर्ती गैलोज़ विस्तार के गैलोज़ समुच्चयों का समुच्चय बनते हैं। यहाँ पर ध्यान दें कि सभी के लिए पर हम विभिन्न मानचित्रों को परिभाषित कर सकते हैं, इस प्रकार द्वारा मान प्राप्त होते हैं, इस कारण पुनः हम क्रुल टोपोलॉजी को परिभाषित करते हैं, यह सभी के लिए सबसे कमजोर टोपोलॉजी है, जहाँ पर मानचित्र निरंतर हैं, जहां हम प्रत्येक को समर्थन देते हैं, इसका कारण असतत टोपोलॉजी के साथ इसे विभिन्न रूप से उपयोग करने पर प्राप्त होता हैं। इस प्रकार टोपोलॉजिकल समुच्चय की व्युत्क्रम सीमा के रूप में जहाँ फिर से प्रत्येक मान को हल किया जाता हैं। इस प्रकार असतत टोपोलॉजी से संपन्न है। यह बनाता है कि अनंत समुच्चय वास्तव में प्रत्येक अनंत समुच्चय को गैलोज़ विस्तार के गैलोज़ समुच्चय के रूप में प्राप्त किया जा सकता है,[1] यहाँ पर ध्यान दें कि जब परिमित होता है, तब क्रुल टोपोलॉजी असतत टोपोलॉजी के समान होती है।अब जब हमने गैलोज़ समुच्चय पर टोपोलॉजी को परिभाषित कर लिया है, तो हम अनंत गैलोज़ एक्सटेंशन के लिए मौलिक प्रमेय को दोबारा स्थापित कर सकते हैं।

इस प्रकार के सभी परिमित मध्यवर्ती क्षेत्र विस्तारों के समुच्चय को निरूपित करें, यहाँ पर के लिए और के सभी संवृत उपसमुच्चयों के समुच्चय को से निरूपित करते हैं। इस प्रकार क्रुल टोपोलॉजी से संपन्न किया जाता हैं। तब इसके बीच में आपत्ति उपस्थित रहती है, जो और मानचित्र द्वारा इस प्रकार दी जाती हैं-

द्वारा परिभाषित और मानचित्र द्वारा परिभाषित के समान हैं। यहाँ पर महत्वपूर्ण बात यह हैं जो इसे जांचने के लिए आवश्यक है, वह है, जहाँ पर सुपरिभाषित मानचित्र है, यही वह है जिसका संवृत उपसमुच्चय है, जहाँ पर सभी मध्यवर्ती मानों के लिए इस प्रमाण के लिए उदाहरण देखें।[1]

यह भी देखें

संदर्भ

  1. 1.0 1.1 Ribes, Zalesskii (2010). अनंत समूह. Springer. ISBN 978-3-642-01641-7.

अग्रिम पठन

बाहरी संबंध