रीमैनियन मैनिफोल्ड्स की वक्रता

From Vigyanwiki
Revision as of 09:10, 21 July 2023 by alpha>Indicwiki (Created page with "{{For|a more elementary discussion|Curvature of space}} Image:Gaussian curvature.svg|thumb|बाएं से दाएं: नकारात्मक [[गाऊसी...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
बाएं से दाएं: नकारात्मक गाऊसी वक्रता (hyperboloid) की एक सतह, शून्य गाऊसी वक्रता की एक सतह (सिलेंडर (ज्यामिति)), और सकारात्मक गाऊसी वक्रता (गोलाकार) की एक सतह। उच्च आयामों में, कई गुना में अलग-अलग दिशाओं में अलग-अलग वक्रताएं हो सकती हैं, जो रीमैन वक्रता टेंसर द्वारा वर्णित है।

गणित में, विशेष रूप से विभेदक ज्यामिति, 2 से अधिक आयाम वाले रीमैनियन मैनिफ़ोल्ड की अतिसूक्ष्म ज्यामिति इतनी जटिल है कि किसी दिए गए बिंदु पर एकल संख्या द्वारा वर्णित नहीं किया जा सकता है। रीमैन ने इन मैनिफोल्ड्स के लिए वक्रता को परिभाषित करने के लिए एक अमूर्त और कठोर तरीका पेश किया, जिसे अब रीमैन वक्रता टेंसर के रूप में जाना जाता है। इसी तरह की धारणाओं को सतहों और अन्य वस्तुओं की विभेदक ज्यामिति में हर जगह अनुप्रयोग मिला है।

छद्म-रीमैनियन मैनिफोल्ड की वक्रता को केवल थोड़े से संशोधनों के साथ उसी तरह व्यक्त किया जा सकता है।

रीमैनियन मैनिफोल्ड की वक्रता को व्यक्त करने के तरीके

रीमैन वक्रता टेंसर

रीमैनियन मैनिफोल्ड की वक्रता को विभिन्न तरीकों से वर्णित किया जा सकता है; सबसे मानक वक्रता टेंसर है, जो लेवी-सिविटा कनेक्शन (या सहसंयोजक विभेदन) के संदर्भ में दिया गया है। और झूठ व्युत्पन्न निम्नलिखित सूत्र द्वारा:

यहाँ मैनिफोल्ड के स्पर्शरेखा स्थान का एक रैखिक परिवर्तन है; यह प्रत्येक तर्क में रैखिक है। अगर और तब समन्वित सदिश क्षेत्र हैं और इसलिए सूत्र सरल हो जाता है

यानी वक्रता टेंसर सहसंयोजक व्युत्पन्न की गैर-अनुक्रमणात्मकता को मापता है।

रैखिक परिवर्तन इसे वक्रता परिवर्तन या एंडोमोर्फिज्म भी कहा जाता है।

नायब. ऐसी कुछ किताबें हैं जहां वक्रता टेंसर को विपरीत चिह्न से परिभाषित किया गया है।

समरूपताएं और पहचान

वक्रता टेंसर में निम्नलिखित समरूपताएँ हैं:

अंतिम पहचान ग्रेगोरियो रिक्की-कर्बस्ट्रो द्वारा खोजी गई थी, लेकिन अक्सर इसे पहली बियांची पहचान कहा जाता है, सिर्फ इसलिए कि यह नीचे दी गई बियांची पहचान के समान दिखती है। पहले दो को क्रमशः एंटीसिममेट्री और ली बीजगणित संपत्ति के रूप में संबोधित किया जाना चाहिए, क्योंकि दूसरे का अर्थ है, कि R(u, v) सभी के लिए u, v छद्म-ऑर्थोगोनल लाई बीजगणित के तत्व हैं। इन तीनों को मिलाकर छद्म-ऑर्थोगोनल वक्रता संरचना का नाम दिया जाना चाहिए। वे केवल टेंसर बीजगणित की वस्तुओं के साथ पहचान करके एक टेंसर को जन्म देते हैं - लेकिन इसी तरह क्लिफोर्ड-बीजगणित में अवधारणाओं के साथ भी पहचान होती है। आइए ध्यान दें, वक्रता संरचना के ये तीन सिद्धांत एक अच्छी तरह से विकसित संरचना सिद्धांत को जन्म देते हैं, जो प्रोजेक्टर के संदर्भ में तैयार किया जाता है (एक वेइल प्रोजेक्टर, जो वेइल वक्रता को जन्म देता है और एक आइंस्टीन प्रोजेक्टर, जो आइंस्टीनियन गुरुत्वाकर्षण समीकरणों की स्थापना के लिए आवश्यक है)। यह संरचना सिद्धांत छद्म-ऑर्थोगोनल समूहों और Dilation_(metric_space)s की क्रिया के साथ संगत है। इसका लाई समूह और बीजगणित, लाई ट्रिपल्स और जॉर्डन बीजगणित के सिद्धांत के साथ मजबूत संबंध है। चर्चा में दिए गए संदर्भ देखें.

तीन पहचानें वक्रता टेंसर की समरूपताओं की एक पूरी सूची बनाती हैं, यानी कोई भी टेंसर दिया गया हो जो उपरोक्त पहचानों को संतुष्ट करता हो, किसी बिंदु पर ऐसे वक्रता टेंसर के साथ एक रीमैनियन मैनिफोल्ड पाया जा सकता है। सरल गणना से पता चलता है कि ऐसा टेंसर है स्वतंत्र घटक. इन तीनों से एक और उपयोगी पहचान मिलती है:

बियांची पहचान (अक्सर दूसरी बियांची पहचान) सहसंयोजक व्युत्पन्न शामिल हैं:


अनुभागीय वक्रता

अनुभागीय वक्रता रीमैनियन मैनिफोल्ड्स की वक्रता का एक आगे, समतुल्य लेकिन अधिक ज्यामितीय वर्णन है। यह एक फ़ंक्शन है जो एक सेक्शन पर निर्भर करता है (अर्थात स्पर्शरेखा स्थानों में एक 2-तल)। यह की वक्रता है -पी पर अनुभाग; यहाँ -सेक्शन सतह का एक स्थानीय रूप से परिभाषित टुकड़ा है जिसमें समतल होता है पी पर एक स्पर्शरेखा विमान के रूप में, जियोडेसिक्स से प्राप्त होता है जो की छवि की दिशाओं में पी से शुरू होता है पी पर घातीय मानचित्र (रीमैनियन ज्यामिति) के तहत।

अगर में दो रैखिक रूप से स्वतंत्र वेक्टर हैं तब

निम्नलिखित सूत्र इंगित करता है कि अनुभागीय वक्रता वक्रता टेंसर का पूरी तरह से वर्णन करती है:

या एक सरल सूत्र में:


वक्रता रूप

कनेक्शन प्रपत्र वक्रता का वर्णन करने का एक वैकल्पिक तरीका देता है। इसका उपयोग सामान्य वेक्टर बंडलों और प्रमुख बंडलों के लिए अधिक किया जाता है, लेकिन यह लेवी-सिविटा कनेक्शन के साथ स्पर्शरेखा बंडल के लिए भी उतना ही अच्छा काम करता है। एन-डायमेंशनल रीमैनियन मैनिफोल्ड की वक्रता एक एंटीसिमेट्रिक मैट्रिक्स n×n मैट्रिक्स द्वारा दी गई है 2-रूपों का (या समकक्ष मानों वाला 2-रूप)। , ओर्थोगोनल समूह का झूठ बीजगणित , जो रीमैनियन मैनिफोल्ड के स्पर्शरेखा बंडल का संरचना समूह है)।

होने देना ऑर्थोनॉर्मल आधारों का एक स्थानीय खंड बनें। फिर कोई कनेक्शन फॉर्म को परिभाषित कर सकता है, 1-फॉर्म का एक एंटीसिमेट्रिक मैट्रिक्स जो निम्नलिखित पहचान से संतुष्ट हैं

फिर वक्रता रूप द्वारा परिभाषित किया गया है

.

ध्यान दें कि अभिव्यक्तिके लिए आशुलिपि है और इसलिए जरूरी नहीं कि गायब हो जाए। निम्नलिखित वक्रता रूप और वक्रता टेंसर के बीच संबंध का वर्णन करता है:

यह दृष्टिकोण पहली बियांची पहचान को छोड़कर वक्रता टेंसर की सभी समरूपताओं में निर्मित होता है, जो रूप लेता है

कहाँ द्वारा परिभाषित 1-रूपों का एक एन-वेक्टर है . दूसरी बियांची पहचान बनती है

डी बाहरी सहसंयोजक व्युत्पन्न को दर्शाता है

वक्रता संचालिका

कभी-कभी वक्रता के बारे में एक संचालक (गणित) के रूप में सोचना सुविधाजनक होता है स्पर्शरेखा बाहरी उत्पादों पर (के तत्व) ), जिसे निम्नलिखित पहचान द्वारा विशिष्ट रूप से परिभाषित किया गया है:

वक्रता टेंसर की समरूपता (अर्थात् सूचकांकों के पहले और अंतिम जोड़े में एंटीसिमेट्री, और उन जोड़ियों की ब्लॉक-समरूपता) के कारण ऐसा करना संभव है।

आगे की वक्रता टेंसर

सामान्य तौर पर निम्नलिखित टेंसर और फ़ंक्शन वक्रता टेंसर का पूरी तरह से वर्णन नहीं करते हैं, हालाँकि वे एक महत्वपूर्ण भूमिका निभाते हैं।

अदिश वक्रता

स्केलर वक्रता किसी भी रीमैनियन मैनिफोल्ड पर एक फ़ंक्शन है, जिसे विभिन्न प्रकार से दर्शाया जाता है या . यह वक्रता टेंसर का पूर्ण ट्रेस (रैखिक बीजगणित) है; एक लम्बवत आधार दिया गया

 एक बिंदु पर स्पर्शरेखा स्थान में

अपने पास

कहाँ रिक्की टेंसर को दर्शाता है। परिणाम ऑर्थोनॉर्मल आधार की पसंद पर निर्भर नहीं करता है। आयाम 3 से शुरू करके, अदिश वक्रता वक्रता टेंसर का पूरी तरह से वर्णन नहीं करती है।

घुंघराले वक्र

रिक्की वक्रता एक बिंदु पर स्पर्शरेखा स्थान पर एक रैखिक ऑपरेटर है, जिसे आमतौर पर द्वारा दर्शाया जाता है. एन ऑर्थोनॉर्मल आधार दिया गया है

 पी पर स्पर्शरेखा स्थान में हमारे पास है

परिणाम ऑर्थोनॉर्मल आधार की पसंद पर निर्भर नहीं करता है। चार या अधिक आयामों के साथ, रिक्की वक्रता वक्रता टेंसर का पूरी तरह से वर्णन नहीं करती है।

लेवी-सिविटा कनेक्शन के संदर्भ में रिक्की टेंसर के लिए स्पष्ट अभिव्यक्तियाँ क्रिस्टोफ़ेल प्रतीकों पर लेख में दी गई हैं।

वेइल वक्रता टेंसर

वेइल वक्रता टेंसर में रीमैन वक्रता टेंसर के समान समरूपता है, लेकिन एक अतिरिक्त बाधा के साथ: इसका निशान (जैसा कि रिक्की वक्रता को परिभाषित करने के लिए उपयोग किया जाता है) गायब हो जाना चाहिए।

वेइल टेंसर मीट्रिक के अनुरूप मानचित्र परिवर्तन के संबंध में अपरिवर्तनीय है: यदि दो मीट्रिक इस प्रकार संबंधित हैं कुछ सकारात्मक अदिश फलन के लिए , तब .

आयाम 2 और 3 में वेइल टेंसर गायब हो जाता है, लेकिन 4 या अधिक आयामों में वेइल टेंसर गैर-शून्य हो सकता है। निरंतर वक्रता के कई गुना के लिए, वेइल टेंसर शून्य है। इसके अतिरिक्त, यदि और केवल यदि मीट्रिक स्थानीय रूप से यूक्लिडियन मीट्रिक के अनुरूप है।

रिक्की अपघटन

हालांकि व्यक्तिगत रूप से, वेइल टेंसर और रिक्की टेंसर सामान्य तौर पर पूर्ण वक्रता टेंसर का निर्धारण नहीं करते हैं, रीमैन वक्रता टेंसर को वेइल भाग और रिक्की भाग में विघटित किया जा सकता है। इस अपघटन को रिक्की अपघटन के रूप में जाना जाता है, और रीमैनियन मैनिफोल्ड्स की अनुरूप ज्यामिति में एक महत्वपूर्ण भूमिका निभाता है। विशेष रूप से, इसका उपयोग यह दिखाने के लिए किया जा सकता है कि यदि मीट्रिक को अनुरूप कारक द्वारा पुनर्स्केल किया जाता है , फिर रीमैन वक्रता टेंसर बदल जाता है ((0, 4)-टेंसर के रूप में देखा जाता है):

कहाँ कुलकर्णी-नोमिज़ु उत्पाद को दर्शाता है और हेस हेसियन है।

वक्रता की गणना

वक्रता की गणना के लिए

  • हाइपरसर्फेस और सबमैनिफोल्ड्स का दूसरा मौलिक रूप देखें,
  • निर्देशांक में रीमैनियन ज्यामिति या सहसंयोजक व्युत्पन्न में सूत्रों की सूची देखें,
  • फ़्रेम को घुमाकर कार्टन कनेक्शन और वक्रता प्रपत्र देखें।
  • यदि कोई जियोडेसिक#रीमैनियन और स्यूडो-रीमैनियन मैनिफोल्ड्स के व्यवहार के बारे में कुछ जानता है तो जैकोबी समीकरण मदद कर सकता है।

संदर्भ

  • Kobayashi, Shoshichi; Nomizu, Katsumi (1996). Foundations of Differential Geometry, Vol. 1 (New ed.). Wiley-Interscience. ISBN 0-471-15733-3.
  • Woods, F. S. (1901). "Space of constant curvature". The Annals of Mathematics. 3 (1/4): 71–112. doi:10.2307/1967636. JSTOR 1967636.


टिप्पणियाँ


[Category:Riemannian manifol