कोज्या का गोलाकार नियम

From Vigyanwiki
Revision as of 15:52, 23 July 2023 by alpha>Artiverma

गोलाकार त्रिकोणमिति में, कोज्या का नियम (जिसे भुजाओं के लिए कोज्या नियम भी कहा जाता है[1]) गोलाकार त्रिकोणों की भुजाओं और कोणों से संबंधित प्रमेय है, जो समतल त्रिकोणमिति के कोज्या के सामान्य नियम के अनुरूप है।

गोलाकार त्रिभुज कोज्या के नियम द्वारा हल किया गया है।

इकाई वृत्त को देखते हुए, वृत्त की सतह पर गोलाकार त्रिभुज को वृत्त पर तीन बिंदुओं u, v, और w को संयोजित करने वाले बड़े वृत्तों द्वारा परिभाषित किया जाता है (जिसे दाईं ओर दर्शाया गया है)। यदि इन तीनों भुजाओं की लम्बाई a (u से v तक) b (u से w तक), और c (v से w तक) है, और c के विपरीत शीर्ष का कोण C है, तो कोज्या का (प्रथम) गोलाकार नियम कहता है:[2][1]

चूँकि यह इकाई वृत्त है, लंबाई a, b, और c गोले के केंद्र से उन भुजाओं द्वारा अंतरित कोणों ( कांति में) के बराबर हैं। ( गैर-इकाई गोले के लिए, लंबाई त्रिज्या के गुना अंतरित कोण हैं, और सूत्र अभी भी मान्य है यदि a, b और c अंतरित कोणों के रूप में पुनर्व्याख्या की जाती है)। विशेष मामले के रूप में, के लिए C = π/2, तब cos C = 0, और पाइथागोरस प्रमेय का गोलाकार एनालॉग प्राप्त होता है:

यदि कोज्या के नियम का उपयोग हल करने के लिए किया जाता है c, जब कोज्या को पलटने की आवश्यकता गोलाई त्रुटियों को बढ़ाती है c छोटा है। इस मामले में, हैवर्साइन्स के कानून का वैकल्पिक सूत्रीकरण बेहतर है।[3] कोज्या के नियम पर भिन्नता, कोज्या का दूसरा गोलाकार नियम,[4] (कोणों के लिए कोज्या नियम भी कहा जाता है[1] बताता है:

कहाँ A और B भुजाओं के विपरीत कोनों के कोण हैं a और b, क्रमश। इसे दिए गए गोलाकार त्रिकोणमिति#ध्रुवीय त्रिभुजों पर विचार करने से प्राप्त किया जा सकता है।

प्रमाण

पहला प्रमाण

होने देना u, v, और w गोले के केंद्र से त्रिभुज के उन कोनों तक इकाई सदिशों को निरूपित करें। यदि समन्वय प्रणाली को घुमाया जाए तो कोण और दूरियां नहीं बदलती हैं, इसलिए हम समन्वय प्रणाली को घुमा सकते हैं उत्तरी ध्रुव पर है और प्रधान मध्याह्न रेखा (0 का देशांतर) पर कहीं है। इस घूर्णन के साथ, गोलाकार समन्वय करता है हैं कहाँ θ भूमध्य रेखा से नहीं उत्तरी ध्रुव से मापा गया कोण है, और इसके लिए गोलाकार निर्देशांक है हैं कार्तीय निर्देशांक के लिए हैं और कार्तीय निर्देशांक के लिए हैं का मान है दो कार्टेशियन वैक्टर का डॉट उत्पाद है, जो है

दूसरा प्रमाण

होने देना u, v, और w गोले के केंद्र से त्रिभुज के उन कोनों तक इकाई सदिशों को निरूपित करें। अपने पास u · u = 1, v · w = cos c, u · v = cos a, और u · w = cos b. वैक्टर u × v और u × w लंबाई होती है sin a और sin b क्रमशः और उनके बीच का कोण है C, इसलिए

sin a sin b cos C = (u × v) · (u × w) = (u · u)(v · w) − (u · v)(u · w) = cos c − cos a cos b,

क्रॉस उत्पाद, डॉट उत्पाद और बिनेट-कॉची पहचान का उपयोग करना (p × q) · (r × s) = (p · r)(q · s) − (p · s)(q · r).

तीसरा प्रमाण

होने देना u, v, और w गोले के केंद्र से त्रिभुज के उन कोनों तक इकाई सदिशों को निरूपित करें। निम्नलिखित घूर्णी अनुक्रम पर विचार करें जहां हम सबसे पहले वेक्टर को घुमाते हैं v को u कोण से वेक्टर के और घूर्णन का अनुसरण किया u को w कोण से जिसके बाद हम वेक्टर को घुमाते हैं w वापस v कोण से इन तीन घुमावों की संरचना पहचान परिवर्तन का निर्माण करेगी। अर्थात्, समग्र घूर्णन बिंदु को मैप करता है v खुद को। इन तीन घूर्णी संक्रियाओं को चतुर्भुजों द्वारा दर्शाया जा सकता है:

कहाँ और क्रमशः दाएँ हाथ के नियम द्वारा परिभाषित इकाई सदिश घूर्णन के अक्षों का प्रतिनिधित्व करते हैं। इन तीन घुमावों की संरचना ता है, दोनों पक्षों को संयुग्मों से गुणा करना सही है अपने पास कहाँ और इससे हमें पहचान मिलती है[5][6]

इस पहचान के दाहिनी ओर चतुर्भुज गुणनफल द्वारा दिया गया है

सर्वसमिका के दोनों ओर के अदिश भागों को बराबर करने पर, हमें प्राप्त होता है

यहाँ चूँकि यह पहचान किसी भी चाप कोण के लिए मान्य है, इसलिए हम आधे को दबा देते हैं

हम पहले उसे नोट करके भी साइन नियम को पुनः प्राप्त कर सकते हैं और फिर पहचान के दोनों पक्षों पर वेक्टर भागों को बराबर करना

सदिश दोनों सदिशों के लिए ओर्थोगोनल है और और इस तरह से के संबंध में डॉट उत्पाद लेना दोनों तरफ, और हिस्सों को दबाते हुए, हमारे पास है अब और इसलिए हमारे पास है प्रत्येक पक्ष को विभाजित करना अपने पास

चूँकि उपरोक्त अभिव्यक्ति का दाहिना भाग चक्रीय क्रमपरिवर्तन द्वारा अपरिवर्तित है, हमारे पास है

पुनर्व्यवस्था

कोज्या के पहले और दूसरे गोलाकार नियमों को भुजाओं को रखने के लिए पुनर्व्यवस्थित किया जा सकता है (a, b, c) और कोण (A, B, C) समीकरणों के विपरीत पक्षों पर:

तलीय सीमा: छोटे कोण

छोटे गोलाकार त्रिभुजों के लिए, यानी छोटे के लिए a, b, और c, कोज्या का गोलाकार नियम लगभग कोज्या के सामान्य तलीय नियम के समान है,

इसे साबित करने के लिए, हम कोज्या और साइन फ़ंक्शन के लिए मैकलॉरिन श्रृंखला से प्राप्त छोटे-कोण सन्निकटन का उपयोग करेंगे:
इन भावों को कोज्या जाल के गोलाकार नियम में प्रतिस्थापित करना:

या सरलीकरण के बाद:

के लिए बड़े O अंकन शर्तें a और b का बोलबाला है O(a4) + O(b4) जैसा a और b छोटा हो जाओ, इसलिए हम इस अंतिम अभिव्यक्ति को इस प्रकार लिख सकते हैं:

इतिहास

मुहम्मद इब्न मूसा अल-ख्वारिज्मी|अल-ख्वारिज्मी (9वीं शताब्दी), अल-बत्तानी|अल-बत्तानी (9वीं शताब्दी), और नीलकंठ सोमयाजी|नीलकंठ द्वारा कोज्या के गोलाकार नियम के समतुल्य कुछ का उपयोग किया गया था (लेकिन सामान्य रूप से नहीं कहा गया था)। (15th शताब्दी)।[7]

यह भी देखें

टिप्पणियाँ

  1. 1.0 1.1 1.2 W. Gellert, S. Gottwald, M. Hellwich, H. Kästner, and H. Küstner, The VNR Concise Encyclopedia of Mathematics, 2nd ed., ch. 12 (Van Nostrand Reinhold: New York, 1989).
  2. Romuald Ireneus 'Scibor-Marchocki, Spherical trigonometry, Elementary-Geometry Trigonometry web page (1997).
  3. R. W. Sinnott, "Virtues of the Haversine", Sky and Telescope 68 (2), 159 (1984).
  4. Reiman, István (1999). Geometria és határterületei. Szalay Könyvkiadó és Kereskedőház Kft. p. 83.
  5. Brand, Louis (1947). "§186 Great Circle Arccs". वेक्टर और टेंसर विश्लेषण. Wiley. pp. 416–417.
  6. Kuipers, Jack B. (1999). "§10 Spherical Trignometry". चतुर्भुज और घूर्णन अनुक्रम. Princeton University Press. pp. 235–255.
  7. Van Brummelen, Glen (2012). Heavenly mathematics: The forgotten art of spherical trigonometry. Princeton University Press. p. 98.

[[he:טריגונומטריה ספירית#משפט הקוסינוס