सामान्यीकृत वृत्त

From Vigyanwiki
Revision as of 18:00, 20 July 2023 by alpha>Artiverma

ज्यामिति में, सामान्यीकृत वृत्त, जिसे रेखा या वृत्त भी कहा जाता है, सीधी रेखा या वृत्त है। इस अवधारणा का उपयोग विशेष रूप से व्युत्क्रम ज्यामिति में किया जाता है, ऐसा संदर्भ जिसमें सीधी रेखाएं और वृत्त अप्रभेद्य होते हैं।

व्युत्क्रम समतल ज्यामिति अनंत पर बिंदु तक विस्तारित समतल (ज्यामिति) पर तैयार की जाती है। तब सीधी रेखा को उन वृत्तों में से माना जाता है जो अनंत पर अनंतस्पर्शी बिंदु से होकर गुजरती है। व्युत्क्रम ज्यामिति में मूलभूत परिवर्तनों, व्युत्क्रम में यह गुण होता है कि वे सामान्यीकृत वृत्तों को सामान्यीकृत वृत्तों में मैप करते हैं। मोबियस परिवर्तन, जो व्युत्क्रमों की रचनाएँ हैं, उस संपत्ति को प्राप्त करते हैं। ये परिवर्तन आवश्यक रूप से रेखाओं को रेखाओं और वृत्तों को वृत्तों में मैप नहीं करते हैं: वे दोनों को मिला सकते हैं।

व्युत्क्रमण दो प्रकार के होते हैं: वृत्तों पर व्युत्क्रम और रेखाओं पर प्रतिबिम्ब। चूँकि दोनों के गुण बहुत समान हैं, हम उन्हें जोड़ते हैं और सामान्यीकृत वृत्तों में व्युत्क्रमों के बारे में बात करते हैं।

विस्तारित तल में किन्हीं तीन अलग-अलग बिंदुओं को देखते हुए, वास्तव में सामान्यीकृत वृत्त मौजूद होता है जो तीन बिंदुओं से होकर गुजरता है।

त्रिविम प्रक्षेपण का उपयोग करके विस्तारित तल को गोले से पहचाना जा सकता है। अनंत पर स्थित बिंदु तब गोले पर सामान्य बिंदु बन जाता है, और सभी सामान्यीकृत वृत्त गोले पर वृत्त बन जाते हैं।

विस्तारित सम्मिश्र तल में समीकरण

व्युत्क्रम ज्यामिति के विस्तारित तल को विस्तारित जटिल तल से पहचाना जा सकता है, ताकि जटिल संख्याओं के समीकरणों का उपयोग रेखाओं, वृत्तों और व्युत्क्रमों का वर्णन करने के लिए किया जा सके।

वृत्त Γ समतल में बिंदु (ज्यामिति) z का समुच्चय (गणित) है जो केंद्र बिंदु γ से त्रिज्या r पर स्थित है।

जटिल तल का उपयोग करके, हम γ को जटिल संख्या के रूप में और वृत्त Γ को जटिल संख्याओं के सेट के रूप में मान सकते हैं।

इस गुण का उपयोग करते हुए कि सम्मिश्र संख्या को उसके सम्मिश्र संयुग्म से गुणा करने पर हमें संख्या के निरपेक्ष मान#सम्मिश्र संख्याओं का वर्ग प्राप्त होता है, और इसका मापांक मूल से इसकी यूक्लिडियन दूरी है, हम Γ के लिए समीकरण को इस प्रकार व्यक्त कर सकते हैं:

फॉर्म का समीकरण प्राप्त करने के लिए हम इसे वास्तविक गुणांक ए से गुणा कर सकते हैं

जहाँ A और D वास्तविक संख्याएँ हैं, और B और C सम्मिश्र संयुग्म हैं। चरणों को उलटते हुए, हम देखते हैं कि इसे वृत्त बनाने के लिए, त्रिज्या का वर्ग BC/A के बराबर होना चाहिए2 − D/A > 0. इसलिए उपरोक्त समीकरण सामान्यीकृत वृत्त को परिभाषित करता है जब भी AD < BC होता है। ध्यान दें कि जब A शून्य है, तो यह समीकरण सीधी रेखा को परिभाषित करता है।

परिवर्तन w = 1/z

अब यह देखना आसान है कि परिवर्तन w = 1/z सामान्यीकृत वृत्तों को सामान्यीकृत वृत्तों में मैप करता है:

हम देखते हैं कि मूल बिंदु (ए = डी = 0) से गुजरने वाली रेखाएं मूल से गुजरने वाली रेखाओं से मैप की जाती हैं, जो रेखाएं मूल से नहीं गुजरती हैं (ए = 0; डी ≠ 0) मूल से गुजरने वाले वृत्तों के लिए, वहां से गुजरने वाले वृत्तों के लिए मूल बिंदु (ए ≠ 0; डी = 0) से मूल बिंदु से नहीं गुजरने वाली रेखाएं, और वृत्त जो मूल से नहीं गुजर रहे हैं (ए ≠ 0; डी ≠ 0) से उन वृत्त जो मूल से नहीं गुजर रहे हैं।

हर्मिटियन मैट्रिक्स द्वारा प्रतिनिधित्व

सामान्यीकृत वृत्त के समीकरण को परिभाषित करने वाला डेटा

इसे उपयोगी रूप से व्युत्क्रमणीय मैट्रिक्स हर्मिटियन मैट्रिक्स के रूप में रखा जा सकता है

ऐसे दो उलटे हर्मिटियन मैट्रिक्स ही सामान्यीकृत सर्कल को निर्दिष्ट करते हैं यदि और केवल तभी जब वे वास्तविक ाधिक से भिन्न होते हैं।

द्वारा वर्णित सामान्यीकृत वृत्त को रूपांतरित करना मोबियस परिवर्तन द्वारा , उलटा लें परिवर्तन का और करो

संदर्भ