हिप्पोपेड्स
![](https://upload.wikimedia.org/wikipedia/commons/8/89/PedalCurve1.gif)
ज्यामिति में, हिप्पोपेड्स ऐसा समतल वक्र है जो रूप के समीकरण द्वारा निर्धारित होता है
जहाँ ऐसा माना जाता है c > 0 और c > d चूंकि शेष स्तिथि या तो बिंदु तक कम हो जाते हैं या घूर्णन के साथ दिए गए रूप में रखे जा सकते हैं। हिप्पोपेड्स वृत्ताकार तर्कसंगत, डिग्री 4 के बीजगणितीय वक्र हैं और x और y दोनों अक्षों के संबंध में सममित हैं।.
विशेष केस'
जब d > 0 वक्र का आकार अंडाकार होता है और इसे अक्सर 'बूथ का अंडाकार' के रूप में जाना जाता है, और कब d < 0 वक्र बग़ल में आकृति आठ या लेम्निस्केट जैसा दिखता है, और 19वीं शताब्दी के गणितज्ञ जेम्स बूथ (गणितज्ञ) के बाद, जिन्होंने उनका अध्ययन किया था, अक्सर बूथ के लेम्निस्केट के रूप में जाना जाता है। हिप्पोपेड्स की जांच बंद किया हुआ (जिनके लिए उन्हें कभी-कभी प्रोक्लस का हिप्पोपेड्स कहा जाता है) और कनिडस के यूडोक्सस द्वारा भी की गई थी। के लिए d = −c, हिप्पोपेड्स बर्नौली के लेम्निस्केट से मेल खाता है।
स्पिरिक सेक्शन के रूप में परिभाषा
हिप्पोपेड्स को टोरस्र्स और विमान के प्रतिच्छेदन से बने वक्र के रूप में परिभाषित किया जा सकता है, जहां विमान टोरस की धुरी के समानांतर होता है और आंतरिक वृत्त पर स्पर्शरेखा होता है। इस प्रकार यह आध्यात्मिक अनुभाग है जो बदले में प्रकार का टोरिक अनुभाग है।
यदि त्रिज्या a वाले वृत्त को उसके केंद्र से दूरी b पर अक्ष के चारों ओर घुमाया जाता है, तो ध्रुवीय निर्देशांक में परिणामी दरियाई घोड़े का समीकरण
या कार्टेशियन निर्देशांक में
- .
ध्यान दें कि जब a > b टोरस स्वयं को काटता है, तो यह टोरस की सामान्य तस्वीर जैसा नहीं दिखता है।
यह भी देखें
संदर्भ
- Lawrence JD. (1972) Catalog of Special Plane Curves, Dover Publications. Pp. 145–146.
- Booth J. A Treatise on Some New Geometrical Methods, Longmans, Green, Reader, and Dyer, London, Vol. I (1873) and Vol. II (1877).
- Weisstein, Eric W. "Hippopede". MathWorld.
- "Hippopede" at 2dcurves.com
- "Courbes de Booth" at Encyclopédie des Formes Mathématiques Remarquables