संभाव्यता सिद्धांत
This article includes a list of references, related reading or external links, but its sources remain unclear because it lacks inline citations. (February 2012) (Learn how and when to remove this template message) |
संभाव्यता सिद्धांत कुछ प्रकार की अनिश्चितता से निपटने के लिए एक गणितीय सिद्धांत है और संभाव्यता सिद्धांत का एक विकल्प है। यह क्रमशः असंभव से संभव और अनावश्यक से आवश्यक तक, 0 और 1 के बीच संभावना और आवश्यकता के माप का उपयोग करता है। प्रोफ़ेसर लोटफ़ी ज़ादेह ने पहली बार 1978 में फजी सेट और फजी लॉजिक के अपने सिद्धांत के विस्तार के रूप में संभावना सिद्धांत पेश किया। डिडिएर डुबोइस (गणितज्ञ) और हेनरी प्रेड ने इसके विकास में और योगदान दिया। इससे पहले, 1950 के दशक में, अर्थशास्त्री जी.एल.एस. शेकले ने संभावित आश्चर्य की डिग्री का वर्णन करने के लिए न्यूनतम/अधिकतम बीजगणित का प्रस्ताव रखा था।
संभावना का औपचारिकीकरण
सरलता के लिए, मान लें कि प्रवचन का ब्रह्मांड Ω एक सीमित सेट है। एक संभावना माप एक फ़ंक्शन है से से [0, 1] इस प्रकार:
- स्वयंसिद्ध 1:
- स्वयंसिद्ध 2:
- स्वयंसिद्ध 3: किसी भी असंयुक्त समुच्चय उपसमुच्चय के लिए और .
यह इस प्रकार है कि, परिमित संभाव्यता स्थानों पर संभाव्यता की तरह, संभावना माप सिंगलटन पर इसके व्यवहार से निर्धारित होता है:
अभिगृहीत 1 की व्याख्या इस धारणा के रूप में की जा सकती है कि Ω दुनिया की भविष्य की स्थितियों का एक विस्तृत विवरण है, क्योंकि इसका मतलब है कि Ω के बाहर के तत्वों को कोई विश्वास महत्व नहीं दिया गया है।
अभिगृहीत 2 की व्याख्या इस धारणा के रूप में की जा सकती है कि साक्ष्य किससे है का निर्माण किसी भी विरोधाभास से मुक्त है। तकनीकी रूप से, इसका तात्पर्य यह है कि Ω में संभावना 1 के साथ कम से कम एक तत्व है।
अभिगृहीत 3 संभावनाओं में योगात्मकता अभिगृहीत से मेल खाता है। हालाँकि इसमें एक महत्वपूर्ण व्यावहारिक अंतर है। संभाव्यता सिद्धांत कम्प्यूटेशनल रूप से अधिक सुविधाजनक है क्योंकि अभिगृहीत 1-3 का तात्पर्य यह है कि:
- किसी भी उपसमुच्चय के लिए और .
क्योंकि प्रत्येक घटक की संभावना से संघ की संभावना को जाना जा सकता है, इसलिए यह कहा जा सकता है कि संघ संचालक के संबंध में संभावना संघटन का सिद्धांत है। हालाँकि ध्यान दें कि यह इंटरसेक्शन ऑपरेटर के संबंध में संरचनागत नहीं है। आम तौर पर:
जब Ω परिमित नहीं है, तो Axiom 3 को इसके द्वारा प्रतिस्थापित किया जा सकता है:
- सभी सूचकांक सेटों के लिए , यदि उपसमुच्चय जोड़ीवार असंयुक्त हैं,
आवश्यकता
जबकि संभाव्यता सिद्धांत एक एकल संख्या, संभाव्यता का उपयोग करता है, यह वर्णन करने के लिए कि किसी घटना के घटित होने की कितनी संभावना है, संभावना सिद्धांत दो अवधारणाओं, संभावना और घटना की आवश्यकता का उपयोग करता है। किसी भी सेट के लिए , आवश्यकता माप द्वारा परिभाषित किया गया है
- .
उपरोक्त सूत्र में, के पूरक को दर्शाता है , वह तत्व है वह संबंधित नहीं है . यह दिखाना सीधा है कि:
- किसी के लिए
ओर वो:
- .
ध्यान दें कि संभाव्यता सिद्धांत के विपरीत, संभावना स्व-दोहरी नहीं है। यानी किसी भी इवेंट के लिए , हमारे पास केवल असमानता है:
हालाँकि, निम्नलिखित द्वैत नियम लागू है:
- किसी भी घटना के लिए , दोनों में से एक , या
तदनुसार, किसी घटना के बारे में मान्यताओं को एक संख्या और एक बिट द्वारा दर्शाया जा सकता है।
व्याख्या
ऐसे चार मामले हैं जिनकी व्याख्या इस प्रकार की जा सकती है:
मतलब कि आवश्यक है। निश्चित रूप से सच है. इसका तात्पर्य यह है .
मतलब कि असंभव है। निश्चित रूप से झूठ है. इसका तात्पर्य यह है .
मतलब कि संभव है। मुझे बिल्कुल भी आश्चर्य नहीं होगा अगर घटित होना। वह छोड़ देता है अबाधित.
मतलब कि अनावश्यक है. मुझे बिल्कुल भी आश्चर्य नहीं होगा अगर उत्पन्न नहीं होता। वह छोड़ देता है अबाधित.
पिछले दो मामलों का प्रतिच्छेदन है और इसका मतलब यह है कि मैं किसी भी चीज़ पर विश्वास नहीं करता . क्योंकि यह इस तरह की अनिश्चितता की अनुमति देता है, संभावना सिद्धांत शास्त्रीय द्विसंयोजक तर्क के बजाय कई-मूल्यवान तर्क, जैसे अंतर्ज्ञानवादी तर्क, के स्नातक स्तर से संबंधित है।
ध्यान दें कि संभावना के विपरीत, फ़ज़ी लॉजिक यूनियन और इंटरसेक्शन ऑपरेटर दोनों के संबंध में रचनात्मक है। फ़ज़ी सिद्धांत के साथ संबंध को निम्नलिखित क्लासिक उदाहरण से समझाया जा सकता है।
- अस्पष्ट तर्क: जब एक बोतल आधी भरी होती है, तो यह कहा जा सकता है कि बोतल भरी होने के प्रस्ताव की सत्यता का स्तर 0.5 है। पूर्ण शब्द को बोतल में तरल की मात्रा का वर्णन करने वाले एक अस्पष्ट विधेय के रूप में देखा जाता है।
- संभावना सिद्धांत: एक बोतल है, या तो पूरी तरह से भरी हुई है या पूरी तरह से खाली है। प्रस्ताव संभावना स्तर कि बोतल भरी हुई है 0.5 है, विश्वास की एक डिग्री का वर्णन करता है। उस प्रस्ताव में 0.5 की व्याख्या करने का एक तरीका इसके अर्थ को इस प्रकार परिभाषित करना है: मैं शर्त लगाने के लिए तैयार हूं कि यह तब तक खाली है जब तक अंतर सम (1:1) या बेहतर है, और मैं किसी भी कीमत पर शर्त नहीं लगाऊंगा कि यह भरा हुआ है।
संभावना सिद्धांत एक सटीक संभाव्यता सिद्धांत के रूप में
संभाव्यता और संभावना सिद्धांतों के बीच एक व्यापक औपचारिक पत्राचार है, जहां अतिरिक्त ऑपरेटर अधिकतम ऑपरेटर से मेल खाता है।
एक संभावना माप को साक्ष्य के डेम्पस्टर-शेफ़र सिद्धांत में एक व्यंजन संभाव्यता माप के रूप में देखा जा सकता है। संभावना सिद्धांत के संचालकों को हस्तांतरणीय विश्वास मॉडल के संचालकों के अति-सतर्क संस्करण के रूप में देखा जा सकता है, जो साक्ष्य के सिद्धांत का एक आधुनिक विकास है।
संभावना को ऊपरी और निचली संभावनाओं के रूप में देखा जा सकता है: कोई भी संभावना वितरण स्वीकार्य संभाव्यता वितरण के एक अद्वितीय क्रेडेंशियल सेट सेट को परिभाषित करता है
यह किसी को सटीक संभाव्यता के उपकरणों का उपयोग करके संभावना सिद्धांत का अध्ययन करने की अनुमति देता है।
आवश्यकता तर्क
हम अभिगृहीत 1 और अभिगृहीत 3 को संतुष्ट करने वाले प्रत्येक फलन को सामान्यीकृत संभावना कहते हैं। हम सामान्यीकृत आवश्यकता को सामान्यीकृत संभावना का द्वैत कहते हैं। सामान्यीकृत आवश्यकताएँ एक बहुत ही सरल और दिलचस्प अस्पष्ट तर्क से संबंधित हैं जिसे आवश्यकता तर्क कहा जाता है। आवश्यकता तर्क के कटौती तंत्र में तार्किक स्वयंसिद्ध सामान्य शास्त्रीय टॉटोलॉजी (तर्क) हैं। इसके अलावा, सामान्य कार्यप्रणाली का विस्तार करने वाला केवल एक अस्पष्ट अनुमान नियम है। ऐसा नियम कहता है कि यदि α और α → β क्रमशः डिग्री λ और μ पर सिद्ध होते हैं, तो हम डिग्री न्यूनतम {λ,μ} पर β का दावा कर सकते हैं। यह देखना आसान है कि इस तरह के तर्क के सिद्धांत सामान्यीकृत आवश्यकताएं हैं और पूरी तरह से सुसंगत सिद्धांत आवश्यकताओं के साथ मेल खाते हैं (उदाहरण के लिए गेरला 2001 देखें)।
यह भी देखें
- फ़ज़ी माप सिद्धांत
- तार्किक संभावना
- मॉडल तर्क
- संभाव्य तर्क
- यादृच्छिक-अस्पष्ट चर
- हस्तांतरणीय विश्वास मॉडल
- ऊपरी और निचली संभावनाएँ
संदर्भ
- Dubois, Didier and Prade, Henri, "Possibility Theory, Probability Theory and Multiple-valued Logics: A Clarification", Annals of Mathematics and Artificial Intelligence 32:35–66, 2002.
- Gerla Giangiacomo, Fuzzy logic: Mathematical Tools for Approximate Reasoning, Kluwer Academic Publishers, Dordrecht 2001.
- Ladislav J. Kohout, "Theories of Possibility: Meta-Axiomatics and Semantics", Fuzzy Sets and Systems 25:357-367, 1988.
- Zadeh, Lotfi, "Fuzzy Sets as the Basis for a Theory of Possibility", Fuzzy Sets and Systems 1:3–28, 1978. (Reprinted in Fuzzy Sets and Systems 100 (Supplement): 9–34, 1999.)
- Brian R. Gaines and Ladislav J. Kohout, "Possible Automata", in Proceedings of the International Symposium on Multiple-Valued Logic, pp. 183-192, Bloomington, Indiana, May 13-16, 1975.