आंशिक आसवन

From Vigyanwiki
Revision as of 12:11, 19 July 2022 by alpha>Indicwiki (Created page with "{{Short description|Separation of a mixture into its component parts}} आंशिक आसवन अपने घटक भागों, या अंशों में...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

आंशिक आसवन अपने घटक भागों, या अंशों में मिश्रण का पृथक्करण है।रासायनिक यौगिकों को उन्हें एक तापमान पर गर्म करके अलग किया जाता है जिस पर मिश्रण के एक या अधिक अंश वाष्पीकरण करेंगे।यह आसवन का उपयोग करने के लिए आसवन का उपयोग करता है।आम तौर पर घटक भागों में उबलते बिंदु होते हैं जो 25 & nbsp से कम भिन्न होते हैं; ° C (45 & nbsp; ° F) एक वातावरण के दबाव में एक दूसरे से।यदि उबलते बिंदुओं में अंतर 25 & nbsp; ° C से अधिक है, तो एक साधारण आसवन का उपयोग आमतौर पर किया जाता है।इसका उपयोग कच्चे तेल को परिष्कृत करने के लिए किया जाता है।

प्रयोगशाला सेटअप

एक प्रयोगशाला में आंशिक आसवन सामान्य प्रयोगशाला कांच के बने पदार्थ और उपकरणों का उपयोग करता है, जिसमें आमतौर पर एक बन्सन बर्नर, एक गोल-तल वाला फ्लास्क और एक कंडेनसर शामिल है, साथ ही एकल-पुष्पन अंशांकन स्तंभ भी शामिल है।

आंशिक आसवन

एक उदाहरण के रूप में, पानी और इथेनॉल के मिश्रण के आसवन पर विचार करें।इथेनॉल उबलता है 78.4 °C (173.1 °F) जबकि पानी उबलता है 100 °C (212 °F)।इसलिए, मिश्रण को गर्म करके, सबसे वाष्पशील घटक (इथेनॉल) तरल छोड़ने वाले वाष्प में अधिक से अधिक डिग्री तक ध्यान केंद्रित करेगा।कुछ मिश्रण Azeotropes बनाते हैं, जहां मिश्रण या तो घटक की तुलना में कम तापमान पर उबलता है।इस उदाहरण में, एक मिश्रण 96% इथेनॉल और 4% पानी उबलता है 78.2 °C (172.8 °F); मिश्रण शुद्ध इथेनॉल की तुलना में अधिक अस्थिर है। इस कारण से, इथेनॉल को इथेनॉल-पानी के मिश्रण के प्रत्यक्ष आंशिक आसवन द्वारा पूरी तरह से शुद्ध नहीं किया जा सकता है।

उपकरण को आरेख में इकट्ठा किया जाता है। (आरेख एक निरंतर तंत्र के विपरीत एक बैच तंत्र का प्रतिनिधित्व करता है।) मिश्रण को कुछ एंटी-बम्पिंग ग्रैन्यूल (या एक टेफ्लॉन लेपित चुंबकीय स्टिरर बार के साथ चुंबकीय सरगर्मी का उपयोग करने के लिए), और अंशांकन के साथ गोल-तल वाले फ्लास्क में डाल दिया जाता है कॉलम को शीर्ष में फिट किया गया है। भिन्नात्मक आसवन स्तंभ को अभी भी बर्तन के तल पर गर्मी स्रोत के साथ स्थापित किया गया है। जैसे -जैसे अभी भी बर्तन से दूरी बढ़ती है, स्तंभ में एक तापमान ढाल बनता है; यह शीर्ष पर सबसे अच्छा है और तल पर सबसे गर्म है। जैसा कि मिश्रित वाष्प तापमान ढाल पर चढ़ता है, कुछ वाष्प संघनन और तापमान ढाल के साथ वाष्पीकरण करता है। हर बार वाष्प संघनित और वाष्पीकरण करता है, वाष्प में अधिक वाष्पशील घटक की संरचना बढ़ जाती है। यह स्तंभ की लंबाई के साथ वाष्प को विकृत करता है, और अंततः, वाष्प पूरी तरह से अधिक वाष्पशील घटक (या एज़ोट्रोप) से बना होता है। वाष्प कांच के प्लेटफार्मों पर संघनित होता है, जिसे ट्रे के रूप में जाना जाता है, स्तंभ के अंदर, और नीचे के तरल में वापस चला जाता है, रिफ्लक्सिंग डिस्टिलेट। हीटिंग की मात्रा और अंशांकन प्राप्त करने के लिए आवश्यक समय के संदर्भ में दक्षता को ऊन, एल्यूमीनियम पन्नी, या अधिमानतः एक वैक्यूम जैकेट जैसे इन्सुलेटर में कॉलम के बाहर को इन्सुलेट करके सुधार किया जा सकता है। सबसे गर्म ट्रे सबसे नीचे है और सबसे अच्छा शीर्ष पर है। स्थिर-राज्य स्थितियों में, प्रत्येक ट्रे पर वाष्प और तरल वाष्प-तरल संतुलन में होते हैं। संतुलन। मिश्रण का सबसे वाष्पशील घटक स्तंभ के शीर्ष पर गैस के रूप में बाहर निकलता है। स्तंभ के शीर्ष पर वाष्प तब कंडेनसर में गुजरता है, जो इसे तरलीकृत होने तक नीचे ठंडा करता है। अधिक ट्रे (गर्मी, प्रवाह, आदि की एक व्यावहारिक सीमा के लिए) के साथ अलगाव अधिक शुद्ध है, शुरू में, कंडेनसेट अज़ोट्रोपिक रचना के करीब होगा, लेकिन जब इथेनॉल का अधिकांश हिस्सा निकाला गया है, तो संघनित हो जाता है। धीरे -धीरे पानी में अमीर।[citation needed] यह प्रक्रिया तब तक जारी रहती है जब तक कि सभी इथेनॉल मिश्रण से बाहर नहीं निकल जाते।इस बिंदु को थर्मामीटर पर दिखाए गए तापमान में तेज वृद्धि से पहचाना जा सकता है।

उपरोक्त स्पष्टीकरण सैद्धांतिक तरीके से अंशांकन कार्यों को दर्शाता है।सामान्य प्रयोगशाला अंशांकन कॉलम सरल ग्लास ट्यूब (अक्सर वैक्यूम-जैकेट, और कभी-कभी आंतरिक रूप से चांदी से युक्त) एक पैकिंग से भरा होगा, अक्सर छोटे ग्लास हेलिकॉप्टर के साथ 4 to 7 millimetres (0.16 to 0.28 in) व्यास। इस तरह के एक कॉलम को सैद्धांतिक ट्रे की संख्या के संदर्भ में कॉलम को निर्धारित करने के लिए एक ज्ञात मिश्रण प्रणाली के आसवन द्वारा कैलिब्रेट किया जा सकता है। अंशांकन में सुधार करने के लिए उपकरण को कुछ प्रकार के रिफ्लक्स स्प्लिटर (रिफ्लक्स वायर, गागो, मैग्नेटिक स्विंगिंग बकेट, आदि) के उपयोग से स्तंभ में संघनित करने के लिए सेट किया गया है - एक विशिष्ट सावधान अंशांकन लगभग 4 के रिफ्लक्स अनुपात को नियोजित करेगा: 1 (4 भागों ने 1 भाग कंडेनसेट टेक ऑफ के लिए कंडेनसेट लौटा दिया)।

प्रयोगशाला आसवन में, कई प्रकार के कंडेनसर आमतौर पर पाए जाते हैं। लिबिग कंडेनसर केवल एक पानी जैकेट के भीतर एक सीधी ट्यूब है और कंडेनसर का सबसे सरल (और अपेक्षाकृत कम महंगा) रूप है। ग्राहम कंडेनसर एक पानी की जैकेट के भीतर एक सर्पिल ट्यूब है, और अल्लीन कंडेनसर के अंदर की ट्यूब पर बड़े और छोटे कसने की एक श्रृंखला होती है, प्रत्येक सतह क्षेत्र को बढ़ाती है जिस पर वाष्प घटक संघनित हो सकते हैं।

वैकल्पिक सेट-अप एक मल्टी-आउटलेट डिस्टिलेशन रिसीवर फ्लास्क (गाय या सुअर के रूप में संदर्भित) का उपयोग कंडेनसर को तीन या चार प्राप्त फ्लास्क को जोड़ने के लिए कर सकते हैं। गाय या सुअर को मोड़कर, डिस्टिलेट्स को किसी भी चुने हुए रिसीवर में शामिल किया जा सकता है। क्योंकि रिसीवर को आसवन प्रक्रिया के दौरान हटाने और प्रतिस्थापित करने की आवश्यकता नहीं होती है, इसलिए इस प्रकार का उपकरण उपयोगी होता है जब वायु-संवेदनशील रसायनों के लिए एक अक्रिय वातावरण के तहत या कम दबाव में डिस्टिलिंग होता है। एक पर्किन त्रिभुज एक वैकल्पिक उपकरण है जिसका उपयोग अक्सर इन स्थितियों में किया जाता है क्योंकि यह सिस्टम के बाकी हिस्सों से रिसीवर के अलगाव की अनुमति देता है, लेकिन प्रत्येक अंश के लिए एक एकल रिसीवर को हटाने और फिर से हटाने की आवश्यकता होती है।

वैक्यूम डिस्टिलेशन सिस्टम कम दबाव में काम करते हैं, जिससे सामग्री के क्वथनांक को कम किया जाता है। एंटी-बम्पिंग ग्रैन्यूल, हालांकि, कम दबावों में अप्रभावी हो जाते हैं।

औद्योगिक आसवन

विशिष्ट औद्योगिक आंशिक आसवन स्तंभ

आंशिक आसवन पेट्रोलियम रिफाइनरियों, पेट्रोकेमिकल और रासायनिक संयंत्रों, प्राकृतिक गैस प्रसंस्करण और क्रायोजेनिक वायु पृथक्करण संयंत्रों में उपयोग किए जाने वाले पृथक्करण प्रौद्योगिकी का सबसे आम रूप है।[1][2] ज्यादातर मामलों में, आसवन को एक निरंतर स्थिर स्थिति में संचालित किया जाता है।नए फ़ीड को हमेशा आसवन कॉलम में जोड़ा जा रहा है और उत्पादों को हमेशा हटाया जा रहा है।जब तक फ़ीड, गर्मी, परिवेश के तापमान, या संघनन में परिवर्तन के कारण प्रक्रिया में गड़बड़ी नहीं होती है, तब तक फ़ीड की मात्रा जोड़ी जा रही है और हटाए जा रहे उत्पाद की मात्रा सामान्य रूप से समान होती है।इसे निरंतर, स्थिर-राज्य आंशिक आसवन के रूप में जाना जाता है।

औद्योगिक आसवन आमतौर पर बड़े, ऊर्ध्वाधर बेलनाकार स्तंभों में किया जाता है, जिन्हें आसवन या अंशांकन टावरों या आसवन स्तंभों के रूप में जाना जाता है 0.65 to 6 meters (2 to 20 ft) और ऊंचाइयों से लेकर 6 to 60 meters (20 to 197 ft) या अधिक।आसवन टावरों में कॉलम के अंतराल पर तरल आउटलेट होते हैं जो विभिन्न अंशों या उत्पादों की वापसी की अनुमति देते हैं, जिनमें अलग -अलग उबलते बिंदु या उबलते रेंज होते हैं।स्तंभों के अंदर उत्पाद के तापमान को बढ़ाकर, विभिन्न उत्पादों को अलग किया जाता है।सबसे हल्के उत्पाद (सबसे कम उबलते बिंदु वाले) स्तंभों के ऊपर से बाहर निकलते हैं और सबसे भारी उत्पाद (उच्चतम उबलते बिंदु वाले) स्तंभ के नीचे से बाहर निकलते हैं।

उदाहरण के लिए, आंशिक आसवन का उपयोग तेल रिफाइनरियों में कच्चे तेल को उपयोगी पदार्थों (या अंशों) में अलग -अलग उबलते बिंदुओं के अलग -अलग हाइड्रोकार्बन में अलग करने के लिए किया जाता है।उच्च उबलते बिंदुओं के साथ कच्चे तेल के अंश:

  • अधिक कार्बन परमाणु हैं
  • उच्च आणविक भार है
  • कम ब्रांकेड-चेन अल्केन्स हैं
  • रंग में गहरे हैं
  • अधिक चिपचिपा हैं
  • प्रज्वलित और जलाने के लिए अधिक कठिन हैं
एक विशिष्ट औद्योगिक आसवन टॉवर का आरेख

बड़े पैमाने पर औद्योगिक टावर्स उत्पादों के अधिक पूर्ण पृथक्करण को प्राप्त करने के लिए भाटा का उपयोग करते हैं।[3] रिफ्लक्स एक आसवन या अंशांकन टॉवर से संघनित ओवरहेड तरल उत्पाद के हिस्से को संदर्भित करता है जो टॉवर के ऊपरी हिस्से में वापस आ जाता है जैसा कि एक विशिष्ट, बड़े पैमाने पर औद्योगिक आसवन टॉवर के योजनाबद्ध आरेख में दिखाया गया है।टॉवर के अंदर, नीचे की ओर बहने वाला रिफ्लक्स तरल ऊपर की ओर बहने वाले वाष्प को संघनित करने के लिए आवश्यक शीतलन प्रदान करता है, जिससे आसवन टॉवर की प्रभावशीलता बढ़ जाती है।अधिक भाटा सैद्धांतिक प्लेटों की एक दी गई संख्या के लिए प्रदान किया जाता है, बेहतर उबलते सामग्रियों से कम उबलते सामग्री के टॉवर को अलग करने के लिए बेहतर है।वैकल्पिक रूप से, किसी दिए गए अलगाव के लिए प्रदान किए गए अधिक भाटा, कम सैद्धांतिक प्लेटों की आवश्यकता होती है।

कच्चे तेल को आंशिक आसवन द्वारा अंशों में अलग किया जाता है।अंशांकन स्तंभ के शीर्ष पर अंशों में तल पर अंशों की तुलना में कम उबलते बिंदु होते हैं।सभी अंशों को अन्य शोधन इकाइयों में आगे संसाधित किया जाता है।

आंशिक आसवन का उपयोग वायु पृथक्करण में भी किया जाता है, जिसमें तरल ऑक्सीजन, तरल नाइट्रोजन और अत्यधिक केंद्रित आर्गन का उत्पादन होता है।क्लोरोसिलेंस का आसवन भी एक अर्धचालक के रूप में उपयोग के लिए उच्च शुद्धता वाले सिलिकॉन के उत्पादन को सक्षम करता है।

औद्योगिक उपयोगों में, कभी-कभी ट्रे के बजाय कॉलम में एक पैकिंग सामग्री का उपयोग किया जाता है, खासकर जब कॉलम में कम दबाव ड्रॉप की आवश्यकता होती है, जैसा कि वैक्यूम के तहत काम करते समय होता है।यह पैकिंग सामग्री या तो यादृच्छिक डंप पैकिंग हो सकती है (1–3 in (25–76 mm) वाइड) जैसे कि रस्चिग रिंग्स या स्ट्रक्चर्ड शीट मेटल।विशिष्ट निर्माता कोच, सल्जर और अन्य कंपनियां हैं।तरल पदार्थ पैकिंग की सतह को गीला करते हैं और वाष्प इस गीली सतह पर गुजरते हैं, जहां द्रव्यमान हस्तांतरण होता है।पारंपरिक ट्रे आसवन के विपरीत, जिसमें प्रत्येक ट्रे वाष्प तरल संतुलन के एक अलग बिंदु का प्रतिनिधित्व करती है, एक पैक किए गए कॉलम में वाष्प-तरल संतुलन वक्र निरंतर होता है।हालांकि, जब मॉडलिंग पैक किए गए स्तंभों को अधिक पारंपरिक ट्रे से संबंधित पैक किए गए कॉलम की पृथक्करण दक्षता को निरूपित करने के लिए कई सैद्धांतिक प्लेटों की गणना करना उपयोगी होता है।अलग -अलग आकार की पैकिंग में अलग -अलग सतह क्षेत्र और छिद्र होते हैं।ये दोनों कारक पैकिंग प्रदर्शन को प्रभावित करते हैं।

औद्योगिक आसवन स्तंभों का डिज़ाइन

एक आसवन टॉवर में ठेठ बबल-कैप ट्रे के रासायनिक इंजीनियरिंग योजनाबद्ध

एक आसवन कॉलम का डिजाइन और संचालन फ़ीड और वांछित उत्पादों पर निर्भर करता है।एक सरल, बाइनरी घटक फ़ीड, विश्लेषणात्मक तरीके जैसे कि मैककेबे -थिएल विधि को देखते हुए[2][4][5] या फेंसके समीकरण[2] इस्तेमाल किया जा सकता है।एक बहु-घटक फ़ीड के लिए, सिमुलेशन मॉडल का उपयोग डिजाइन और संचालन दोनों के लिए किया जाता है।

इसके अलावा, आसवन स्तंभों में उपयोग किए जाने वाले वाष्प-तरल संपर्क उपकरणों (प्लेटों या ट्रे के रूप में संदर्भित) की क्षमता आमतौर पर एक सैद्धांतिक की तुलना में कम होती है 100% कुशल संतुलन चरण। इसलिए, एक आसवन स्तंभ को सैद्धांतिक वाष्प-तरल संतुलन चरणों की संख्या से अधिक प्लेटों की आवश्यकता होती है।

रिफ्लक्स कंडेनस किए गए ओवरहेड उत्पाद के हिस्से को संदर्भित करता है जो टॉवर पर वापस आ जाता है। नीचे की ओर बहने वाला भाटा ऊपर की ओर बहने वाले वाष्प को संघनित करने के लिए आवश्यक शीतलन प्रदान करता है। रिफ्लक्स अनुपात, जो ओवरहेड उत्पाद के लिए (आंतरिक) भाटा का अनुपात है, इसके विपरीत आसवन उत्पादों के कुशल पृथक्करण के लिए आवश्यक चरणों की सैद्धांतिक संख्या से संबंधित है। आंशिक आसवन टावरों या स्तंभों को कुशलता से आवश्यक पृथक्करण प्राप्त करने के लिए डिज़ाइन किया गया है। अंशांकन स्तंभों का डिज़ाइन आम तौर पर दो चरणों में बनाया जाता है; एक प्रक्रिया डिजाइन, एक यांत्रिक डिजाइन के बाद। प्रक्रिया डिजाइन का उद्देश्य रिफ्लक्स अनुपात, हीट रिफ्लक्स और अन्य गर्मी कर्तव्यों सहित आवश्यक सैद्धांतिक चरणों और धारा प्रवाह की संख्या की गणना करना है। दूसरी ओर, यांत्रिक डिजाइन का उद्देश्य टॉवर इंटर्नल, कॉलम व्यास और ऊंचाई का चयन करना है। ज्यादातर मामलों में, अंशांकन टावरों का यांत्रिक डिजाइन सीधा नहीं है। टॉवर इंटर्नल के कुशल चयन और स्तंभ ऊंचाई और व्यास की सटीक गणना के लिए, कई कारकों को ध्यान में रखा जाना चाहिए। डिजाइन गणना में शामिल कुछ कारकों में फ़ीड लोड आकार और गुण और उपयोग किए गए आसवन कॉलम के प्रकार शामिल हैं।

उपयोग किए गए दो प्रमुख प्रकार के आसवन कॉलम ट्रे और पैकिंग कॉलम हैं। पैकिंग कॉलम आमतौर पर छोटे टावरों और लोड के लिए उपयोग किए जाते हैं जो संक्षारक या तापमान-संवेदनशील होते हैं या वैक्यूम सेवा के लिए जहां दबाव ड्रॉप महत्वपूर्ण है। दूसरी ओर, ट्रे कॉलम, उच्च तरल भार वाले बड़े कॉलम के लिए उपयोग किए जाते हैं। वे पहली बार 1820 के दशक में दृश्य पर दिखाई दिए। अधिकांश तेल रिफाइनरी संचालन में, ट्रे कॉलम मुख्य रूप से तेल शोधन के विभिन्न चरणों में पेट्रोलियम अंशों को अलग करने के लिए उपयोग किए जाते हैं।

तेल शोधन उद्योग में, अंशांकन टावरों का डिजाइन और संचालन अभी भी काफी हद तक एक अनुभवजन्य आधार पर पूरा किया जाता है। पेट्रोलियम अंशांकन स्तंभों के डिजाइन में शामिल गणना में सामान्य अभ्यास में संख्यात्मक चार्ट, टेबल और जटिल अनुभवजन्य समीकरणों के उपयोग की आवश्यकता होती है। हाल के वर्षों में, हालांकि, आंशिक आसवन के लिए कुशल और विश्वसनीय कंप्यूटर-एडेड डिज़ाइन प्रक्रियाओं को विकसित करने के लिए काफी मात्रा में काम किया गया है।[6]


इतिहास

कार्बनिक पदार्थों के आंशिक आसवन ने 9 वीं शताब्दी के कार्यों में एक महत्वपूर्ण भूमिका निभाई, जो इस्लामिक कीमियागर जाबिर इब्न हेयन के लिए जिम्मेदार है, उदाहरण के लिए, उदाहरण के लिएKitāb al-Sabʿīn('द बुक ऑफ सेवेंटी'), शीर्षक के तहत गेरार्ड ऑफ क्रेमोना (सी। 1114–1187) द्वारा लैटिन में अनुवादित किया गया Liber de septuaginta.[7] जानवरों और सब्जी पदार्थों के आंशिक आसवन के साथ जाबिरियन प्रयोग, और कुछ हद तक खनिज पदार्थों के भी, मुख्य विषय का गठन किया De anima in arte alkimiae, एक मूल रूप से अरबी काम ने एविसेना के लिए झूठे रूप से जिम्मेदार ठहराया, जिसे लैटिन में अनुवादित किया गया था और रोजर बेकन के लिए सबसे महत्वपूर्ण रसायनिक स्रोत बनाने के लिए आगे बढ़ेगा (c. 1220–1292)।[8]


यह भी देखें

  • अज़ोट्रोपिक आसवन
  • बैच आसवन
  • निकालने वाला आसवन
  • फ्रीज डिस्टिलेशन
  • भाप आसवन

संदर्भ

  1. Kister, Henry Z. (1992). Distillation Design (1st ed.). McGraw-Hill. ISBN 0-07-034909-6.
  2. 2.0 2.1 2.2 Perry, Robert H.; Green, Don W. (1984). Perry's Chemical Engineers' Handbook (6th ed.). McGraw-Hill. ISBN 0-07-049479-7.
  3. "Reflux drum". Alutal (in English). Retrieved 2020-09-18.
  4. Beychok, Milton (May 1951). "Algebraic Solution of McCabe-Thiele Diagram". Chemical Engineering Progress.
  5. Seader, J. D.; Henley, Ernest J. (1998). Separation Process Principles. New York: Wiley. ISBN 0-471-58626-9.
  6. Ibrahim, Hassan Al-Haj (2014). "Chapter 5". In Bennett, Kelly (ed.). Matlab: Applications for the Practical Engineer. Sciyo. pp. 139–171. ISBN 978-953-51-1719-3.
  7. Kraus, Paul (1942–1943). Jâbir ibn Hayyân: Contribution à l'histoire des idées scientifiques dans l'Islam. I. Le corpus des écrits jâbiriens. II. Jâbir et la science grecque. Cairo: Institut Français d'Archéologie Orientale. ISBN 9783487091150. OCLC 468740510. Vol. II, p. 5. On the attribution of the Latin translation to Gerard of Cremona, see Burnett, Charles (2001). "The Coherence of the Arabic-Latin Translation Program in Toledo in the Twelfth Century". Science in Context. 14 (1–2): 249–288. doi:10.1017/S0269889701000096. S2CID 143006568. p. 280; Moureau, Sébastien (2020). "Min al-kīmiyāʾ ad alchimiam. The Transmission of Alchemy from the Arab-Muslim World to the Latin West in the Middle Ages". Micrologus. 28: 87–141. hdl:2078.1/211340. pp. 106, 111.
  8. Newman, William R. (2000). "Alchemy, Assaying, and Experiment". In Holmes, Frederic L.; Levere, Trevor H. (eds.). Instruments and Experimentation in the History of Chemistry. Cambridge: MIT Press. pp. 35–54. ISBN 9780262082822. p. 44.

]