निलपोटेंट मैट्रिक्स
रैखिक बीजगणित में, एक निलपोटेंट मैट्रिक्स एक वर्ग मैट्रिक्स एन होता है
कुछ सकारात्मक पूर्णांक के लिए . सबसे छोटा ऐसा का सूचकांक कहा जाता है ,[1] कभी-कभी की डिग्री .
अधिक सामान्यतः, एक शून्य-शक्तिशाली परिवर्तन एक रैखिक परिवर्तन है एक सदिश समष्टि का ऐसा होना कुछ सकारात्मक पूर्णांक के लिए (और इस तरह, सभी के लिए ).[2][3][4] ये दोनों अवधारणाएँ निलपोटेंट की अधिक सामान्य अवधारणा के विशेष मामले हैं जो रिंग (बीजगणित) के तत्वों पर लागू होती हैं।
उदाहरण
उदाहरण 1
गणित का सवाल
चूँकि सूचकांक 2 के साथ शून्यशक्ति है .
उदाहरण 2
अधिक सामान्यतः, कोई भी -मुख्य विकर्ण के साथ शून्य के साथ आयामी त्रिकोणीय मैट्रिक्स, सूचकांक के साथ शून्य है [citation needed]. उदाहरण के लिए, मैट्रिक्स
निलपोटेंट है, साथ में
का सूचकांक इसलिए 4 है.
उदाहरण 3
हालाँकि उपरोक्त उदाहरणों में बड़ी संख्या में शून्य प्रविष्टियाँ हैं, एक विशिष्ट निलपोटेंट मैट्रिक्स में ऐसा नहीं होता है। उदाहरण के लिए,
हालाँकि मैट्रिक्स में कोई शून्य प्रविष्टियाँ नहीं हैं।
उदाहरण 4
इसके अतिरिक्त, फॉर्म का कोई भी मैट्रिक्स
जैसे कि
या
वर्ग से शून्य.
उदाहरण 5
शायद निलपोटेंट मैट्रिक्स के कुछ सबसे आकर्षक उदाहरण हैं प्रपत्र के वर्ग आव्यूह:
जिनमें से पहले कुछ हैं:
ये आव्यूह शून्यशक्तिशाली हैं लेकिन सूचकांक से कम की किसी भी घात में शून्य प्रविष्टियाँ नहीं हैं।[5]
उदाहरण 6
परिबद्ध घात वाले बहुपदों के रैखिक समष्टि पर विचार करें। व्युत्पन्न ऑपरेटर एक रेखीय मानचित्र है। हम जानते हैं कि व्युत्पन्न को एक बहुपद पर लागू करने से इसकी डिग्री एक से कम हो जाती है, इसलिए इसे पुनरावृत्त रूप से लागू करने पर, हम अंततः शून्य प्राप्त करेंगे। इसलिए, ऐसे स्थान पर, व्युत्पन्न को एक निलपोटेंट मैट्रिक्स द्वारा दर्शाया जा सकता है।
विशेषता
This section does not cite any sources. (May 2018) (Learn how and when to remove this template message) |
एक के लिए वर्ग मैट्रिक्स वास्तविक संख्या (या सम्मिश्र संख्या) प्रविष्टियों के साथ, निम्नलिखित समतुल्य हैं:
- शून्यशक्तिशाली है.
- के लिए विशेषता बहुपद है .
- के लिए न्यूनतम बहुपद (रैखिक बीजगणित)। है कुछ सकारात्मक पूर्णांक के लिए .
- के लिए एकमात्र जटिल eigenvalue 0 है.
अंतिम प्रमेय विशेषता 0 या पर्याप्त बड़ी विशेषता वाले किसी भी क्षेत्र (गणित) पर आव्यूहों के लिए सत्य है। (cf. न्यूटन की पहचान)
इस प्रमेय के कई परिणाम हैं, जिनमें शामिल हैं:
- एक का सूचकांक निलपोटेंट मैट्रिक्स हमेशा से कम या बराबर होता है . उदाहरण के लिए, प्रत्येक निलपोटेंट मैट्रिक्स वर्ग शून्य पर।
- एक निलपोटेंट मैट्रिक्स का निर्धारक और ट्रेस (रैखिक बीजगणित) हमेशा शून्य होता है। नतीजतन, एक निलपोटेंट मैट्रिक्स व्युत्क्रमणीय मैट्रिक्स नहीं हो सकता है।
- एकमात्र निलपोटेंट विकर्णीय मैट्रिक्स शून्य मैट्रिक्स है।
यह भी देखें: जॉर्डन-शेवेल्ली अपघटन#निलपोटेंसी मानदंड।
वर्गीकरण
इसपर विचार करें (ऊपरी) शिफ्ट मैट्रिक्स:
इस मैट्रिक्स में अतिविकर्ण के साथ 1s और बाकी सभी जगह 0s है। एक रैखिक परिवर्तन के रूप में, शिफ्ट मैट्रिक्स वेक्टर के घटकों को एक स्थिति से बाईं ओर स्थानांतरित करता है, अंतिम स्थिति में शून्य दिखाई देता है:
यह मैट्रिक्स डिग्री के साथ शून्य-शक्तिशाली है , और कानूनी फॉर्म निलपोटेंट मैट्रिक्स है।
विशेष रूप से, यदि तो क्या यह कोई शून्य-शक्तिशाली मैट्रिक्स है? फॉर्म के ब्लॉक विकर्ण मैट्रिक्स के लिए मैट्रिक्स समानता है
जहां प्रत्येक ब्लॉक एक शिफ्ट मैट्रिक्स है (संभवतः विभिन्न आकारों का)। यह फॉर्म मैट्रिसेस के लिए जॉर्डन विहित रूप का एक विशेष मामला है।[7] उदाहरण के लिए, कोई भी गैरशून्य 2×2 निलपोटेंट मैट्रिक्स मैट्रिक्स के समान है
अर्थात यदि यदि कोई शून्येतर 2 × 2 निलपोटेंट मैट्रिक्स है, तो एक आधार मौजूद है बी1, बी2 ऐसे कि N'b'1= 0 और N'b'2= बी1.
यह वर्गीकरण प्रमेय किसी भी क्षेत्र (गणित) पर मैट्रिक्स के लिए लागू होता है। (फ़ील्ड को बीजगणितीय रूप से बंद करना आवश्यक नहीं है।)
उपस्थानों का ध्वज
एक निरर्थक परिवर्तन पर स्वाभाविक रूप से उप-स्थानों का एक ध्वज (रैखिक बीजगणित) निर्धारित करता है
और एक हस्ताक्षर
हस्ताक्षर की विशेषता है एक व्युत्क्रमणीय रैखिक परिवर्तन तक। इसके अलावा, यह असमानताओं को भी संतुष्ट करता है
इसके विपरीत, इन असमानताओं को संतुष्ट करने वाली प्राकृतिक संख्याओं का कोई भी क्रम एक निरर्थक परिवर्तन का हस्ताक्षर है।
अतिरिक्त गुण
- If is nilpotent of index , then and are invertible, where is the identity matrix. The inverses are given by
- If is nilpotent, then
Conversely, if is a matrix and
- Every singular matrix can be written as a product of nilpotent matrices.[8]
- A nilpotent matrix is a special case of a convergent matrix.
सामान्यीकरण
एक रैखिक संचालिका यदि प्रत्येक वेक्टर के लिए स्थानीय रूप से शून्यप्रभावी है , वहाँ एक मौजूद है ऐसा है कि
परिमित-आयामी वेक्टर स्थान पर ऑपरेटरों के लिए, स्थानीय निलपोटेंस, निलपोटेंस के बराबर है।
टिप्पणियाँ
- ↑ Herstein (1975, p. 294)
- ↑ Beauregard & Fraleigh (1973, p. 312)
- ↑ Herstein (1975, p. 268)
- ↑ Nering (1970, p. 274)
- ↑ Mercer, Idris D. (31 October 2005). "Finding "nonobvious" nilpotent matrices" (PDF). idmercer.com. self-published; personal credentials: PhD Mathematics, Simon Fraser University. Retrieved 5 April 2023.
- ↑ Beauregard & Fraleigh (1973, p. 312)
- ↑ Beauregard & Fraleigh (1973, pp. 312, 313)
- ↑ R. Sullivan, Products of nilpotent matrices, Linear and Multilinear Algebra, Vol. 56, No. 3
संदर्भ
- Beauregard, Raymond A.; Fraleigh, John B. (1973), A First Course In Linear Algebra: with Optional Introduction to Groups, Rings, and Fields, Boston: Houghton Mifflin Co., ISBN 0-395-14017-X
- Herstein, I. N. (1975), Topics In Algebra (2nd ed.), John Wiley & Sons
- Nering, Evar D. (1970), Linear Algebra and Matrix Theory (2nd ed.), New York: Wiley, LCCN 76091646