हेसेनबर्ग आव्यूह

From Vigyanwiki
Revision as of 22:56, 28 July 2023 by alpha>Anju

रैखिक बीजगणित में, हेसेनबर्ग आव्यूह एक विशेष प्रकार का वर्ग आव्यूह होता है, जो "लगभग" त्रिकोणीय आव्यूह है। स्पष्ट रूप से कहें तो, उर्ध्व हेसेनबर्ग आव्यूह में पहले उप-विकर्ण के नीचे शून्य प्रविष्टियाँ हैं, और निचले हेसेनबर्ग आव्यूह में पहले सुपर विकर्ण के ऊपर शून्य प्रविष्टियाँ हैं।[1] इनका नाम कार्ल हेसेनबर्ग के नाम पर रखा गया है।[2]


परिभाषाएँ

उर्ध्व (अपर) हेसेनबर्ग आव्यूह

एक वर्ग आव्यूह कहा जाता है कि यह उर्ध्व हेसेनबर्ग रूप में है या यदि यह उर्ध्व हेसेनबर्ग आव्यूह है सभी के लिए साथ .

एक उर्ध्व हेसेनबर्ग आव्यूह को अघटित कहा जाता है यदि सभी उपविकर्णीय प्रविष्टियाँ गैर-शून्य हैं, अर्थात यदि सभी के लिए .[3]


लोअर हेसेनबर्ग आव्यूह

एक वर्ग आव्यूह कहा जाता है कि यह निम्न हेसेनबर्ग रूप में है या यदि इसका स्थानांतरण होता है तो यह निम्न हेसेनबर्ग आव्यूह हैFailed to parse (⧼math_empty_tex⧽): {\displaystyle } एक उर्ध्व हेसेनबर्ग आव्यूह है या समकक्ष यदि सभी के लिए साथ .

यदि सभी सुपरडायगोनल प्रविष्टियाँ गैर-शून्य हैं, तो निचले हेसेनबर्ग आव्यूह को अघटित कहा जाता है, अर्थात यदि सभी के लिए .

उदाहरण

निम्नलिखित आव्यूहों पर विचार करें।

गणित का सवाल एक उर्ध्व उर्ध्विष्कृत हेसेनबर्ग आव्यूह है, एक अपकृष्टअप्रतिबंधित हेसेनबर्ग आव्यूह है और एक अपकृष्टहेस्सेनबर्ग आव्यूह है लेकिन कम नहीं किया गया है।

कंप्यूटर प्रोग्रामिंग

त्रिकोणीय आव्यूह पर लागू होने पर कई रैखिक बीजगणित एल्गोरिदम (कलन विधि) को काफी कम कम्प्यूटेशनल प्रयास की आवश्यकता होती है, और यह सुधार प्रायः हेसेनबर्ग आव्यूह पर भी लागू होता है। यदि एक रैखिक बीजगणित समस्या की बाधाएं एक सामान्य आव्यूह को आसानी से त्रिकोणीय में कम करने की अनुमति नहीं देती हैं, तो हेसेनबर्ग फॉर्म में कमी प्रायः अगली सबसे अच्छी बात होती है। वास्तव में, किसी भी आव्यूह को हेसेनबर्ग फॉर्म में कम करना चरणों की एक सीमित संख्या में प्राप्त किया जा सकता है (उदाहरण के लिए, एकात्मक समानता परिवर्तनों के हाउसहोल्डर परिवर्तन के माध्यम से)। हेसेनबर्ग आव्यूह को त्रिकोणीय आव्यूह में बाद में कमी को स्थानांतरित क्यूआर- गुणनखंडन (फैक्टराइजेशन) जैसी पुनरावृत्त प्रक्रियाओं के माध्यम से प्राप्त किया जा सकता है। आइजेनवैल्यू एल्गोरिदम में, हेसेनबर्ग आव्यूह को अपस्फीति चरणों के साथ संयुक्त शिफ्टेड क्यूआर- गुणनखंडन के माध्यम से त्रिकोणीय आव्यूह में कम किया जा सकता है। एक सामान्य आव्यूह को हेसेनबर्ग आव्यूह में कम करना और फिर एक सामान्य आव्यूह को सीधे त्रिकोणीय आव्यूह में कम करने के बजाय एक त्रिकोणीय आव्यूह में कम करना, प्रायः आइजेनवैल्यू समस्याओं के लिए क्यूआर एल्गोरिदम में शामिल अंकगणित को मितव्ययी बनाता है।

हेसेनबर्ग आव्यूह में कमी

कोई हाउसहोल्डर परिवर्तनों का उपयोग करके समानता परिवर्तन द्वारा आव्यूह को हेसेनबर्ग आव्यूह में परिवर्तित किया जा सकता है। इस तरह के परिवर्तन के लिए निम्नलिखित प्रक्रिया गार्सिया और रोजर द्वारा लिखित सेकेंड कोर्स इन लीनियर अलजेब्रा से अनुकूलित है।[4]

मान लें कोई भी वास्तविक या जटिल हो आव्यूह, फिर मान लो हो का उपआव्यूह पहली पंक्ति को हटाकर इसका निर्माण किया गया और का पहला कॉलम बनें . का निर्माण करें गृहस्वामी आव्यूह जहाँ

यह गृहस्वामी आव्यूह मैप करेगा को और इस प्रकार, ब्लॉक आव्यूह आव्यूह को मैप करेगा आव्यूह के लिए जिसके पहले कॉलम की दूसरी प्रविष्टि के नीचे केवल शून्य है। अब निर्माण करें गृहस्वामी आव्यूह उसी तरह जैसे ऐसा है कि के पहले कॉलम को मैप करता है को , जहाँ का उपआव्यूह है की पहली पंक्ति और पहले कॉलम को हटाकर और का पहला कॉलम, फिर जो मानचित्र आव्यूह के लिए जिसके उपविकर्ण की पहली और दूसरी प्रविष्टि के नीचे केवल शून्य हैं। अब निर्माण करें और तब इसी तरह, लेकिन आव्यूह के लिए की पहली पंक्ति और पहले कॉलम को हटाकर बनाया गया है और पिछले चरणों की तरह आगे बढ़ें। कुल मिलाकर इसी तरह जारी रखें कदम है।

निर्माण द्वारा , पहला किसी की पंक्तियाँ गुणा के अंतर्गत आव्यूह उर्ध्विवर्तनीय हैं दाईं ओर से. इसलिए, किसी भी आव्यूह को फॉर्म के समानता परिवर्तन द्वारा उर्ध्व हेसेनबर्ग आव्यूह में परिवर्तित किया जा सकता है .

गुण

के लिए , यह निरा सत्य है कि हर आव्यूह उर्ध्व हेसेनबर्ग और अपकृष्टहेसेनबर्ग दोनों है।[5]

त्रिकोणीय आव्यूह वाले हेसेनबर्ग आव्यूह का उत्पाद फिर से हेसेनबर्ग है। अधिक सटीक रूप से, यदि उर्ध्व हेसेनबर्ग है और तो, उर्ध्व त्रिकोणीय है और उर्ध्व हेसेनबर्ग हैं।

एक आव्यूह जो उर्ध्व हेसेनबर्ग और अपकृष्टहेसेनबर्ग दोनों है, एक त्रिविकर्ण आव्यूह है, जिसमें सममित या हर्मिटियन हेसेनबर्ग आव्यूह महत्वपूर्ण उदाहरण हैं। एक हर्मिटियन आव्यूह को त्रि-विकर्ण वास्तविक सममित आव्यूह में घटाया जा सकता है।[6]


हेसेनबर्ग ऑपरेटर

हेसेनबर्ग ऑपरेटर एक अनंत आयामी हेसेनबर्ग आव्यूह है। यह प्रायः कुछ डोमेन पर वर्ग-अभिन्न होलोमोर्फिक फलन के स्थान के लिए ऑर्थोगोनल बहुपद की एक प्रणाली के लिए जैकोबी संचालक के सामान्यीकरण के रूप में होता है - यानी, एक बर्गमैन स्पेस है। इस मामले में, हेसेनबर्ग ऑपरेटर राइट-शिफ्ट ऑपरेटर है , द्वारा दिए गए

हेसेनबर्ग ऑपरेटर के प्रत्येक प्रमुख उपआव्यूह के आइगेनवैल्यू उस उपआव्यूह के लिए विशेषता बहुपद द्वारा दिए गए हैं। इन बहुपदों को बर्गमैन बहुपद कहा जाता है और बर्गमैन अंतरिक्ष के लिए एक ऑर्थोगोनल बहुपद आधार प्रदान करते हैं।

यह भी देखें

टिप्पणियाँ

  1. Horn & Johnson (1985), page 28; Stoer & Bulirsch (2002), page 251
  2. Biswa Nath Datta (2010) Numerical Linear Algebra and Applications, 2nd Ed., Society for Industrial and Applied Mathematics (SIAM) ISBN 978-0-89871-685-6, p. 307
  3. Horn & Johnson 1985, p. 35
  4. Ramon Garcia, Stephan; Horn, Roger (2017). रेखीय बीजगणित में एक दूसरा कोर्स. ISBN 9781107103818.
  5. Lecture Notes. Notes for 2016-10-21 Cornell University
  6. "LAPACK में कम्प्यूटेशनल रूटीन (eigenvalues)।". sites.science.oregonstate.edu. Retrieved 2020-05-24.


संदर्भ


बाहरी संबंध