लीनियर प्रेडिक्शन

From Vigyanwiki

रैखिक भविष्यवाणी एक गणितीय ऑपरेशन है जहां असतत समय और निरंतर समय के भविष्य के मूल्यों का अनुमान लगाया जाता है। असतत-समय संकेत आगे बढ़ाना का अनुमान पिछले नमूनों के रैखिक परिवर्तन के रूप में लगाया जाता है।

अंकीय संकेत प्रक्रिया में, रैखिक भविष्यवाणी को अक्सर रैखिक भविष्य कहनेवाला कोडिंग (एलपीसी) कहा जाता है और इस प्रकार इसे फ़िल्टर सिद्धांत के सबसेट के रूप में देखा जा सकता है। सिस्टम विश्लेषण में, गणित का एक उपक्षेत्र, रैखिक भविष्यवाणी को गणितीय मॉडलिंग या अनुकूलन (गणित) के एक भाग के रूप में देखा जा सकता है।

भविष्यवाणी मॉडल

सबसे आम प्रतिनिधित्व है

कहाँ अनुमानित संकेत मान है, पिछले देखे गए मान, के साथ , और भविष्यवक्ता गुणांक. इस अनुमान से उत्पन्न त्रुटि है

कहाँ सही सिग्नल मान है.

ये समीकरण सभी प्रकार की (एक-आयामी) रैखिक भविष्यवाणी के लिए मान्य हैं। अंतर भविष्यवक्ता गुणांक के तरीके में पाए जाते हैं चुने गए हैं.

बहुआयामी संकेतों के लिए त्रुटि मीट्रिक को अक्सर इस प्रकार परिभाषित किया जाता है

कहाँ एक उपयुक्त चुना हुआ वेक्टर मानदंड (गणित) है। जैसी भविष्यवाणियाँ शोर माप से क्रमशः वर्तमान और पिछले सिग्नल मूल्यों का अनुमान लगाने के लिए कलमन फ़िल्टर और स्मूथर्स के भीतर नियमित रूप से उपयोग किया जाता है।[1]

मापदंडों का अनुमान लगाना

मापदंडों के अनुकूलन में सबसे आम विकल्प मूल माध्य वर्ग मानदंड है जिसे स्वसहसंबंध मानदंड भी कहा जाता है। इस विधि में हम वर्ग त्रुटि के अपेक्षित मान को न्यूनतम कर देते हैं , जो समीकरण उत्पन्न करता है

1 ≤ j ≤ p के लिए, जहां R सिग्नल x का स्वत:सहसंबंध हैn, के रूप में परिभाषित

,

और E अपेक्षित मान है. बहुआयामी मामले में यह एलपी स्पेस|एल को न्यूनतम करने के अनुरूप है2 आदर्श.

उपरोक्त समीकरणों को सामान्य समीकरण या ऑटोरेग्रेसिव मॉडल#यूल-वॉकर समीकरण|यूल-वॉकर समीकरण कहा जाता है। मैट्रिक्स रूप में समीकरणों को समकक्ष रूप में लिखा जा सकता है

जहां ऑटोसहसंबंध मैट्रिक्स एक सममित है, तत्वों के साथ Toeplitz मैट्रिक्स , वेक्टर स्वसहसंबंध वेक्टर है , और , पैरामीटर वेक्टर।

दूसरा, अधिक सामान्य दृष्टिकोण फॉर्म में परिभाषित त्रुटियों के वर्गों के योग को कम करना है

जहां सब पर खोज में अनुकूलन समस्या है अब बाध्य होना चाहिए .

दूसरी ओर, यदि माध्य वर्ग पूर्वानुमान त्रुटि को एकता के लिए बाध्य किया जाता है और पूर्वानुमान त्रुटि समीकरण को सामान्य समीकरणों के शीर्ष पर शामिल किया जाता है, तो समीकरणों का संवर्धित सेट इस प्रकार प्राप्त होता है

जहां सूचकांक 0 से लेकर है , और एक है आव्यूह।

रैखिक भविष्यवक्ता के मापदंडों की विशिष्टता एक विस्तृत विषय है और बड़ी संख्या में अन्य दृष्टिकोण प्रस्तावित किए गए हैं। वास्तव में, स्वसहसंबंध विधि सबसे आम है[2] और इसका उपयोग, उदाहरण के लिए, मोबाइल संप्रेषण के लिए विश्वव्यापी व्यवस्था मानक में वाक् कोडिंग के लिए किया जाता है।

मैट्रिक्स समीकरण का समाधान कम्प्यूटेशनल रूप से एक अपेक्षाकृत महंगी प्रक्रिया है। मैट्रिक्स व्युत्क्रमण के लिए गॉसियन उन्मूलन संभवतः सबसे पुराना समाधान है लेकिन यह दृष्टिकोण समरूपता का कुशलतापूर्वक उपयोग नहीं करता है . एक तेज़ एल्गोरिथ्म 1947 में नॉर्मन लेविंसन द्वारा प्रस्तावित लेविंसन रिकर्सन है, जो समाधान की पुनरावर्ती गणना करता है। विशेष रूप से, उपरोक्त स्वसहसंबंध समीकरणों को डर्बिन एल्गोरिथम द्वारा अधिक कुशलता से हल किया जा सकता है।[3] 1986 में, फिलिप डेल्सर्ट और वाई.वी. जेनिन ने इस एल्गोरिदम में एक सुधार का प्रस्ताव रखा जिसे स्प्लिट लेविंसन रिकर्सन कहा जाता है, जिसके लिए लगभग आधी संख्या में गुणन और विभाजन की आवश्यकता होती है।[4] यह बाद के रिकर्सन स्तरों पर पैरामीटर वैक्टर की एक विशेष सममित संपत्ति का उपयोग करता है। अर्थात्, इष्टतम भविष्यवक्ता युक्त के लिए गणना शर्तें इष्टतम भविष्यवक्ता युक्त के लिए समान गणना का उपयोग करती हैं शर्तें।

मॉडल मापदंडों की पहचान करने का एक अन्य तरीका कलमन फिल्टर का उपयोग करके राज्य अनुमानों की पुनरावृत्तीय गणना करना और अपेक्षा-अधिकतमकरण एल्गोरिदम के भीतर अधिकतम संभावना अनुमान अनुमान प्राप्त करना है।

समान दूरी वाले मानों के लिए, एक बहुपद प्रक्षेप एक बहुपद प्रक्षेप#दिए गए मानों का एक रैखिक संयोजन|ज्ञात मानों का रैखिक संयोजन है। यदि असतत समय संकेत को डिग्री के बहुपद का पालन करने का अनुमान लगाया जाता है फिर भविष्यवक्ता गुणांक पास्कल के त्रिकोण की संगत पंक्ति द्वारा दिए गए हैं#द्विपद परिवर्तन गुणांक का त्रिकोण पास्कल के त्रिकोण की तरह है।|द्विपद परिवर्तन गुणांक का त्रिकोण। यह अनुमान कम शोर वाले धीरे-धीरे बदलते सिग्नल के लिए उपयुक्त हो सकता है। के पहले कुछ मूल्यों के लिए भविष्यवाणियाँ हैं

यह भी देखें

संदर्भ

  1. "Kalman Filter - an overview | ScienceDirect Topics". www.sciencedirect.com. Retrieved 2022-06-24.
  2. "Linear Prediction - an overview | ScienceDirect Topics". www.sciencedirect.com. Retrieved 2022-06-24.
  3. Ramirez, M. A. (2008). "डर्बिन के आइसोमेट्रिक परिवर्तन पर आधारित एक लेविंसन एल्गोरिदम" (PDF). IEEE Signal Processing Letters. 15: 99–102. doi:10.1109/LSP.2007.910319. S2CID 18906207.
  4. Delsarte, P. and Genin, Y. V. (1986), The split Levinson algorithm, IEEE Transactions on Acoustics, Speech, and Signal Processing, v. ASSP-34(3), pp. 470–478


अग्रिम पठन


बाहरी संबंध