समग्र कार्य

From Vigyanwiki
Revision as of 21:30, 7 August 2023 by alpha>Akriti

डेटाबेस प्रबंधन में, समग्र फ़ंक्शन या एकत्रीकरण फ़ंक्शन ऐसे सबरूटीन है, जिसमें एकल सारांशित आँकड़े बनाने के लिए कई पंक्तियों में उपस्थित मानों को एक साथ संसाधित किया जाता है।

(चित्र 1) इकाई संबंध आरेख एकत्रीकरण का प्रतिनिधित्व।

सामान्य समग्र फ़ंक्शन्स में निम्न बिंदु उपस्थित रहते हैं:

अन्य में उपस्थित हैं:

  • नानमीन (अर्ताथ NaN मानों को नगण्य मानना, जिसे शून्य या शून्य के रूप में भी जाना जाता है)
  • मानक विचलन

औपचारिक रूप से, समग्र फ़ंक्शन इनपुट के रूप में सेट (कंप्यूटर विज्ञान), मल्टीसेट (अमूर्त डेटा प्रकार) (बैग), या कुछ इनपुट डोमेन से सूची (कंप्यूटिंग) लेता है। I और आउटपुट डोमेन के तत्व को आउटपुट करता है O.[1] इनपुट और आउटपुट डोमेन समान हो सकते हैं, जैसे कि SUM, या भिन्न हो सकता है, जैसे कि के लिए COUNT इसका प्रमुख उदाहरण हैं।

समग्र फ़ंक्शन सामान्यतः कई प्रोग्रामिंग लैंग्वेज, स्प्रेडशीट्स और रिलेशनल बीजगणित में उपस्थित होते हैं। इस प्रकार listagg e> फ़ंक्शन, जैसे SQL:2016 मानक में परिभाषित है[2]

एकाधिक पंक्तियों से डेटा को एकल संयोजित स्ट्रिंग में एकत्रित करता है।

इकाई-संबंध मॉडल में, एकत्रीकरण को चित्र 1 में दिखाए अनुसार संबंध और उसकी संस्थाओं के चारों ओर आयत के साथ दर्शाया गया है ताकि यह दर्शाया जा सके कि इसे समग्र इकाई के रूप में माना जा रहा है।[3]

विघटित समुच्चय कार्य

समग्र फ़ंक्शन बॉटलनेक (सॉफ़्टवेयर) प्रस्तुत करते हैं, क्योंकि उन्हें संभावित रूप से ही बार में सभी इनपुट मानों की आवश्यकता होती है। वितरित कंप्यूटिंग में, ऐसी गणनाओं को छोटे टुकड़ों में विभाजित करना वांछनीय है, और किसी फंक्शन को सामान्यतः समानांतर कंप्यूटिंग, विभाजन और विक्ट्री एल्गोरिथ्म के माध्यम से वितरित करना है।

कुछ समुच्चय कार्यों की गणना उपसमुच्चय के लिए समुच्चय की गणना करके और फिर इन समुच्चयों को एकत्रित करके की जा सकती है; उदाहरणों में उपस्थित COUNT, MAX, MIN, और SUM का उपयोग किया जाता हैं। इसकी अन्य स्थितियों में समुच्चय की गणना उपसमुच्चय के लिए सहायक संख्याओं की गणना करके, इन सहायक संख्याओं को एकत्र करके और अंत में कुल संख्या की गणना करके की जा सकती है; उदाहरणों में उपस्थित AVERAGE (योग और गिनती पर नज़र रखना, अंत में विभाजित करना) और RANGE अधिकतम और न्यूनतम पर ध्यान रखना, अंत में घटाना उपस्थित होता हैं। इस प्रकार इसकी अन्य स्थितियों में पूरे सेट का बार में विश्लेषण किए बिना कुल की गणना नहीं की जा सकती है, चूंकि कुछ स्थितियों में अनुमान वितरित किए जा सकते हैं; उदाहरणों में उपस्थित DISTINCT COUNT (गणना-विशिष्ट समस्या), MEDIAN, और MODE को सम्मिलित किया जाता हैं।

ऐसे फ़ंक्शंस को विघटित युनिफाइट फंक्शंस या विघटित समुच्चय कार्य कहा जाता है।[4] इसका सबसे सरल स्व-विघटित युनिफाइट फंक्शंस के रूप में संदर्भित किया जा सकता है, जिन्हें उन फंक्शंस f के रूप में परिभाषित किया गया है, जैसे कि मर्ज ऑपरेटर है, जो इस प्रकार हैं कि-

कहाँ मल्टीसेट्स का संघ है, जिसे मोनोइड समरूपता के रूप में देख सकते हैं।

उदाहरण के लिए, SUM:

, सिंगलटन के लिए;
, अर्थात विलय बस संयोजन है.

COUNT:

,
.

MAX:

,
.

MIN:

,[2]
.

यहाँ पर ध्यान दें कि स्व-विघटित युनिफाइट फंक्शंस को अलग-अलग लागू करके साथ ही जोड़ा भी जा सकता है, औपचारिक रूप से, उत्पाद लेने के उद्देश्य से इसका उपयोग करते हैं। इसलिए उदाहरण के लिए कोई दोनों की गणना कर सकता है, जिसके आधार पर SUM और COUNT ही समय में दो नंबरों को ट्रैक करके इसका पता लगाया जाता हैं।

अधिक सामान्यतः, कोई विघटित एकत्रीकरण फ़ंक्शन f को परिभाषित कर सकता है, इसके आधार पर अंतिम फ़ंक्शन की संरचना g के रूप में व्यक्त किया जा सकता है, और स्व-विघटित एकत्रीकरण फ़ंक्शन h के लिए के रूप में परिभाषित किया जाता हैं। उदाहरण के लिए, AVERAGE=SUM/COUNT और RANGE=MAXMIN इसका मुख्य उदाहरण हैं।

मैप रिड्यूस फ्रेमवर्क में, इन चरणों को प्रारंभिक कमी के रूप में व्यक्तिगत रिकॉर्ड/सिंगलटन सेट पर मान को संयोजित करने के लिए दो एकत्रीकरण बाइनरी को संयोजित करके और अंतिम कमी के सहायक मान पर अंतिम फ़ंक्शन के रूप में जाना जाता है।[5] इस कारण विघटित होने वाले एकत्रीकरण को शफ़ल चरण से पहले ले जाना प्रारंभिक कमी के विशेष भाग के रूप में जाना जाता है,[6]

ऑनलाइन विश्लेषणात्मक प्रसंस्करण (ओएलएपी) में डीकंपोजेबल एग्रीगेशन फ़ंक्शन महत्वपूर्ण हैं, क्योंकि वे आधार डेटा के अतिरिक्त OLAP घन में पूर्व-गणना किए गए परिणामों पर एकत्रीकरण प्रश्नों की गणना करने की अनुमति देते हैं।[7] उदाहरण के लिए, इसका समर्थन करना सरल है, इसके आधार पर COUNT, MAX, MIN, और SUM OLAP में, चूँकि इन्हें OLAP क्यूब के प्रत्येक सेल के लिए गणना की जा सकती है और फिर सारांशित (रोल अप) किया जा सकता है, लेकिन इसका समर्थन करना कठिन हो जाता है, इस प्रकार MEDIAN के लिए इसकी गणना प्रत्येक दृश्य के लिए अलग से की जानी चाहिए।

अन्य विघटित समुच्चय फंक्शन

समग्र डेटा से औसत और मानक विचलन की गणना करने के लिए, प्रत्येक समूह के लिए उपलब्ध होना आवश्यक है: इसके मानों का कुल (Σxi = SUM(x)), मानों की संख्या (N=COUNT(x)) और मानों के वर्गों का योग (Σx)i2=SUM(x2)) के समान होती हैं।[8] AVG:

या
या, केवल यदि COUNT(X)=COUNT(Y)

SUM(x2):


समूहों के मानक विचलन की गणना करने के लिए मानों के वर्गों का योग महत्वपूर्ण है


STDDEV:


सभी बिंदुओं पर समान संभावनाओं वाली सीमित जनसंख्या के लिए, हमारे पास है[9]

इसका अर्ताथ यह है कि मानक विचलन मानों के वर्गों के औसत और औसत मान के वर्ग के बीच अंतर के वर्गमूल के बराबर है।

यह भी देखें

संदर्भ

उद्धरण

  1. Jesus, Baquero & Almeida 2011, 2 Problem Definition, pp. 3.
  2. 2.0 2.1 Winand, Markus (2017-05-15). "Big News in Databases: New SQL Standard, Cloud Wars, and ACIDRain (Spring 2017)". DZone. Retrieved 2017-06-10. In December 2016, ISO released a new version of the SQL standard. It introduces new features such as row pattern matching, listagg, date and time formatting, and JSON support.
  3. Elmasri, Ramez (2016). डेटाबेस सिस्टम की बुनियादी बातें. Sham Navathe (Seventh ed.). Hoboken, NJ. p. 133. ISBN 978-0-13-397077-7. OCLC 913842106.{{cite book}}: CS1 maint: location missing publisher (link)
  4. Jesus, Baquero & Almeida 2011, 2.1 Decomposable functions, pp. 3–4.
  5. Yu, Gunda & Isard 2009, 2. Distributed Aggregation, pp. 2–4.
  6. Yu, Gunda & Isard 2009, 2. Distributed Aggregation, p. 1.
  7. Zhang 2017, p. 1.
  8. Ing. Óscar Bonilla, MBA
  9. Standard deviation#Identities and mathematical properties


ग्रन्थसूची


अग्रिम पठन


बाहरी संबंध