श्रेणीबद्ध सदिश समष्टि

From Vigyanwiki
Revision as of 11:32, 2 August 2023 by alpha>Manjuu

गणित में, श्रेणीबद्ध सदिश समिष्ट एक सदिश समिष्ट होता है जिसमें श्रेणीबद्ध (गणित) या ग्रेडेशन की अतिरिक्त संरचना होती है, जो सदिश समिष्ट का रैखिक उपसमिष्ट के सदिश समिष्ट के प्रत्यक्ष योग में अपघटन होता है।

पूर्णांक उन्नयन

मान लीजिए गैर-ऋणात्मक पूर्णांक का समुच्चय है। एक -श्रेणीबद्ध सदिश समिष्ट को अधिकांशतः उपसर्ग के बिना बस एक श्रेणीबद्ध सदिश समिष्ट कहा जाता है, यह एक सदिश समिष्ट V है जो फॉर्म के प्रत्यक्ष योग में एक अपघटन के साथ होता है

जहां प्रत्येक एक सदिश समष्टि है। किसी दिए गए n के लिए के अवयवो को डिग्री n के सजातीय अवयव कहा जाता है।

श्रेणीबद्ध सदिश समिष्ट सामान्य हैं। उदाहरण के लिए, या अनेक वैरीएबल वाले सभी बहुपद का समुच्चय श्रेणीबद्ध सदिश समिष्ट बनाता है, जहाँ डिग्री n के सजातीय अवयव बहुपद n की डिग्री के एकपदी के लिए पूर्ण रूप से रैखिक संयोजन होते हैं।

सामान्य ग्रेडेशन

श्रेणीबद्ध सदिश समिष्ट के उप-समिष्टो को प्राकृतिक संख्याओं के समुच्च्च्य द्वारा अनुक्रमित करने की आवश्यकता नहीं है, और किसी भी समुच्च्च्य के अवयवो द्वारा अनुक्रमित किया जा सकता है। I-श्रेणीबद्ध सदिश समिष्ट V समुच्च्च्य I के अवयवो i द्वारा अनुक्रमित उपसमिष्ट के प्रत्यक्ष योग में अपघटन के साथ सदिश समिष्ट है:

इसलिए, एक -श्रेणीबद्ध सदिश समिष्ट, जैसा कि ऊपर परिभाषित किया गया है, सिर्फ एक I-श्रेणीबद्ध सदिश समिष्ट है जहां समुच्चय I (प्राकृतिक संख्याओं का समुच्चय) है।


वह स्थिति जहां I वलय है (अवयव 0 और 1) भौतिकी में विशेष रूप से महत्वपूर्ण है। इस प्रकार -श्रेणीबद्ध सदिश समिष्ट को सुपरवेक्टर समिष्ट के रूप में भी जाना जाता है।

समरूपता

सामान्य सूचकांक समुच्च्च्य I के लिए, दो I-वर्गीकृत सदिश समिष्टो के बीच रैखिक मानचित्र f : VW को श्रेणीबद्ध रेखीय मानचित्र कहा जाता है इस प्रकार यदि यह सजातीय अवयवो की ग्रेडिंग को संरक्षित करता है। श्रेणीबद्ध रैखिक मानचित्र को श्रेणीबद्ध सदिश समिष्टो का समरूपता (या रूपवाद) या सजातीय रैखिक मानचित्र भी कहा जाता है:

I में सभी i के लिए

एक निश्चित क्षेत्र (गणित) और निश्चित सूचकांक समुच्च्च्य के लिए, श्रेणीबद्ध सदिश रिक्त समिष्ट श्रेणी (गणित) बनाते हैं जिनकी आकृतियाँ श्रेणीबद्ध रैखिक मानचित्र हैं।

जब I क्रमविनिमेय मोनोइड (जैसे कि प्राकृतिक संख्याएं) है, तो कोई सामान्यतः रैखिक मानचित्रों को परिभाषित कर सकता है जो प्रोपर्टी द्वारा I में किसी भी डिग्री के 'सजातीय' होते हैं

I में सभी j के लिए,

जहां + मोनॉइड ऑपरेशन को दर्शाता है। यदि इसके अतिरिक्त I निराकरण प्रोपर्टी को संतुष्ट करता है जिससे इसे एबेलियन समूह में एम्बेडिंग किया जा सके जो इसे उत्पन्न करता है (उदाहरण के लिए पूर्णांक यदि I प्राकृतिक संख्या है), तो कोई रैखिक मानचित्र भी परिभाषित कर सकता है जो एक ही प्रोपर्टी द्वारा डिग्री आई के सजातीय हैं (किन्तु अब + में समूह संचालन A को दर्शाता है)। विशेष रूप से, I में I के लिए रेखीय मानचित्र डिग्री -i का सजातीय होगा यदि

I में सभी j के लिए, जबकि
यदि ji I में नहीं है.

जिस प्रकार सदिश समिष्ट से रैखिक मानचित्रों का समुच्च्च्य अपने आप में साहचर्य बीजगणित (सदिश समिष्ट का एंडोमोर्फिज्म बीजगणित) बनाता है, उसी प्रकार समिष्ट से सजातीय रैखिक मानचित्रों का समुच्च्च्य - या तो डिग्री को I तक सीमित करता है या समूह A में किसी भी डिग्री की अनुमति देता है - उन सूचकांक समुच्चयो पर साहचर्य श्रेणीबद्ध बीजगणित बनाता है।

श्रेणीबद्ध सदिश समिष्ट पर संचालन

सदिश समिष्ट पर कुछ ऑपरेशनों को श्रेणीबद्ध सदिश समिष्ट के लिए भी परिभाषित किया जा सकता है।

दो I-श्रेणीबद्ध सदिश समिष्ट V और W को देखते हुए, उनके 'प्रत्यक्ष योग' में ग्रेडेशन के साथ अंतर्निहित सदिश समिष्ट V ⊕ W है

(V ⊕ W)i = Vi ⊕ Wi.

यदि I एक अर्धसमूह है तो दो I-श्रेणीबद्ध सदिश समिष्ट V और W का टेंसर उत्पाद ग्रेडेशन के साथ एक और I-श्रेणीबद्ध सदिश समिष्ट है


हिल्बर्ट-पोंकारे श्रृंखला

एक -श्रेणीबद्ध सदिश समिष्ट दिया गया है जो प्रत्येक के लिए परिमित-आयामी है इसकी हिल्बर्ट-पोंकारे श्रृंखला औपचारिक शक्ति श्रृंखला है

उपरोक्त सूत्रों से, प्रत्यक्ष योग की हिल्बर्ट-पोंकारे श्रृंखला और श्रेणीबद्ध सदिश रिक्त समिष्ट (प्रत्येक डिग्री में परिमित आयामी) के टेंसर उत्पाद क्रमशः संबंधित हिल्बर्ट-पोंकारे श्रृंखला का योग और उत्पाद हैं।

यह भी देखें

संदर्भ

  • Bourbaki, N. (1974) Algebra I (Chapters 1-3), ISBN 978-3-540-64243-5, Chapter 2, Section 11; Chapter 3.