द्रव यांत्रिकी और जलगति विज्ञान में, विवृत चैनल प्रवाह, एक प्रकार का तरल प्रवाह है किसी नलिका के विवृत्त सतह के भीतर होती है, जिसे चैनल के रूप में जाना जाता है।[1][2] नलिका के भीतर दूसरे प्रकार का प्रवाह पाइप प्रवाह है। ये दो प्रकार के प्रवाह कई मानदंडों में समान हैं परंतु एक महत्वपूर्ण दृष्टिकोण में भिन्न हैं: विवृत चैनल प्रवाह में एक विवृत सतह होती है, जबकि पाइप प्रवाह में विवृत्त सतह नहीं होती है।
समय और स्थान के संबंध में प्रवाह की गहराई में परिवर्तन के आधार पर विवृत चैनल प्रवाह को विभिन्न विधियों से वर्गीकृत और वर्णित किया जा सकता है।[3] विवृत चैनल जलगति विज्ञान में प्रवाह के निम्नलिखित मूलभूत प्रकार हैं:
मानदंड के रूप में समय
निरंतर प्रवाह
प्रवाह की गहराई समय के साथ परिवर्तित नहीं होती है, या यदि इसे किसी निश्चित समय अंतराल के समय स्थिर माना जा सकता है।
अस्थिर प्रवाह
प्रवाह की गहराई समय के साथ परिवर्तित होती रहती है।
मानदंड के रूप में स्थान
समान प्रवाह
चैनल के प्रत्येक भाग में प्रवाह की गहराई समान है। एकसमान प्रवाह स्थिर या अस्थिर हो सकता है, यह इस पर निर्भर करता है कि समय के साथ गहराई परिवर्तित होती है या नहीं, (यद्यपि अस्थिर एकसमान प्रवाह दुर्लभ है)।
विविध प्रवाह
प्रवाह की गहराई चैनल की लंबाई के साथ परिवर्तित होती रहती है। तकनीकी रूप से विविध प्रवाह या तो स्थिर या अस्थिर हो सकता है। विविध प्रवाह को या तो तीव्रता से या अल्पांश विविध के रूप में वर्गीकृत किया जा सकता है:
तीव्र विविध प्रवाह
तुलनात्मक रूप से कम दूरी पर गहराई अचानक परिवर्तित हो जाती है। तीव्र विविध प्रवाह को स्थानीय घटना के रूप में जाना जाता है। उदाहरण हाइड्रोलिक जम्प और हाइड्रोलिक ड्रॉप हैं।
अल्पांश विविध प्रवाह
लंबी दूरी पर गहराई परिवर्तित होती रहती है।
सतत प्रवाह
विचाराधीन चैनल की सीमा में प्रवाहन संवर्धन स्थिर है। स्थिर प्रवाह के परिप्रेक्ष्य में प्रायः ऐसा होता है। इस प्रवाह को निरंतर माना जाता है और इसलिए इसे निरंतर स्थिर प्रवाह के लिए निरंतरता समीकरण का उपयोग करके वर्णित किया जा सकता है।
स्थानिक रूप से विविध प्रवाह
किसी चैनल के अनुदिश स्थिर प्रवाह का निर्वहन असमान होता है। ऐसा तब होता है जब जल प्रवाह के समय चैनल में प्रवेश करता है और/या छोड़ देता है। एक चैनल में प्रवेश करने वाले प्रवाह का एक उदाहरण सड़क के किनारे की नाली होगी। एक चैनल से निकलने वाले प्रवाह का एक उदाहरण एक सिंचाई चैनल होगा। इस प्रवाह को निरंतरता समीकरण का उपयोग करके वर्णित किया जा सकता है, निरंतर अस्थिर प्रवाह के लिए समय प्रभाव पर विचार करने की आवश्यकता होती है और इसमें चर के रूप में समय तत्व शामिल होता है।
प्रवाह की अवस्थाएँ
विवृत्त-चैनल प्रवाह का व्यवहार, प्रवाह की जड़त्वीय शक्तियों के सापेक्ष श्यानता और गुरुत्वाकर्षण के प्रभाव से नियंत्रित होता है। सतही तनाव का एक छोटा सा योगदान होता है, परंतु अधिकांश परिस्थितियों में यह एक प्रभावी कारक बनने के लिए पर्याप्त महत्वपूर्ण भूमिका नहीं निभाता है। एक विवृत्त सतह की उपस्थिति के कारण, गुरुत्वाकर्षण सामान्यतः विवृत्त-चैनल प्रवाह का सबसे महत्वपूर्ण चालक है; इसलिए, जड़त्व और गुरुत्वाकर्षण बलों का अनुपात सबसे महत्वपूर्ण आयामहीन मानदंड है।[4] मानदंड को फरोड संख्या के रूप में जाना जाता है, और इसे इस प्रकार परिभाषित किया गया है:
जहाँ माध्य वेग है, , किसी चैनल की गहराई के लिए विशिष्ट लंबाई का मानदंड है, और गुरुत्वाकर्षण त्वरण है. जड़ता के सापेक्ष श्यानता के प्रभाव के आधार पर, जैसा कि रेनॉल्ड्स संख्या द्वारा दर्शाया गया है, प्रवाह या तो लामिना का प्रवाह, अशांत प्रवाह, या परिवर्ती प्रवाह हो सकता है। यद्यपि, यह मान लेना सामान्यतः स्वीकार्य है कि रेनॉल्ड्स संख्या पर्याप्त रूप से बड़ी है जिससे श्यान बलों की उपेक्षा की जा सके।[4]
विवृत्त-चैनल प्रवाह में उपयोगी मात्राओं के लिए तीन संरक्षण नियमों जैसे द्रव्यमान, गति और ऊर्जा का वर्णन करने वाले समीकरण तैयार करना संभव है। प्रभावी समीकरण प्रवाह वेग सदिश क्षेत्र की गतिशीलता पर विचार करने से उत्पन्न होते हैं जो निम्नलिखित हैː
कार्तीय निर्देशांक पद्धति में, ये घटक क्रमशः x, y और z अक्षों में प्रवाह वेग के अनुरूप होते हैं।
समीकरणों के अंतिम रूप को सरल बनाने के लिए, कई धारणाएँ निर्मित करना स्वीकार्य है:
प्रवाह असंपीड्य प्रवाह है (तीव्रता से परिवर्तित हों वाले प्रवाह के लिए यह उपयुक्त धारणा नहीं है)
रेनॉल्ड्स संख्या इतनी बड़ी है कि श्यान प्रसार की उपेक्षा की जा सकती है
प्रवाह x-अक्ष पर एक-आयामी है
निरंतरता समीकरण
द्रव्यमान के संरक्षण का वर्णन करने वाला सामान्य निरंतरता समीकरण इस प्रकार है:
जहाँ द्रव घनत्व है और विचलन संक्रिया है। असंपीड्य प्रवाह की धारणा के अंतर्गत, एक निरंतर नियंत्रण मात्रा के साथ , इस समीकरण की सरल अभिव्यक्ति है। यद्यपि, यह संभव है कि अनुप्रस्थ काट क्षेत्र चैनल में समय और स्थान दोनों के साथ परिवर्तित हो सकता है। यदि हम सातत्य समीकरण के अभिन्न रूप से प्रारंभ करें:
आयतन समाकल को अनुप्रस्थ काट और लंबाई में विघटित करना संभव है, जो निम्नलिखित रूप उत्पन्न करता है:
असम्पीडित, 1डी प्रवाह की धारणा के अंतर्गत, यह समीकरण बन जाता है:
उसको अभिलेखित करके और आयतनिक प्रवाह दर को परिभाषित करने पर, समीकरण निम्नलिखित रूप ले लेता है:
अंत में, यह असंपीड्य, 1डी विवृत चैनल प्रवाह के लिए निरंतरता समीकरण की ओर अग्रसित होता है जो निम्नलिखित है:
संवेग समीकरण
विवृत चैनल प्रवाह के लिए संवेग समीकरण को असंपीड्य नेवियर-स्टोक्स समीकरणों से शुरू करके पाया जा सकता है। असंपीड्य नेवियर-स्टोक्स समीकरण:
जहाँ दबाव है, गतिज श्यानता है, लाप्लास ऑपरेटर है, और गुरुत्वाकर्षण क्षमता है. उच्च रेनॉल्ड्स संख्या और 1डी प्रवाह मान्यताओं का आह्वान करके, हमारे पास समीकरण हैं:
दूसरा समीकरण हीड्रास्टाटिक दबाव को दर्शाता है , जहां चैनल की गहराई मुक्त सतह उन्नयन के बीच का अंतर है और चैनल नीचे . पहले समीकरण में प्रतिस्थापन देता है:
जहां चैनल बेड ढलान है . चैनल बैंकों के साथ कतरनी तनाव को ध्यान में रखते हुए, हम बल शब्द को इस प्रकार परिभाषित कर सकते हैं:
जहाँ कतरनी तनाव है और हाइड्रोलिक त्रिज्या है. घर्षण ढलान को परिभाषित करना , घर्षण हानियों को मापने का एक तरीका, संवेग समीकरण के अंतिम रूप की ओर ले जाता है:
ऊर्जा समीकरण प्राप्त करने के लिए, विशेषण त्वरण शब्द पर ध्यान दें इस प्रकार विघटित किया जा सकता है:
जहाँ प्रवाह की चंचलता है और यूक्लिडियन मानदंड है. इससे बाह्य बल पद की अनदेखी करते हुए संवेग समीकरण का एक रूप प्राप्त होता है, जो निम्न द्वारा दिया गया है:
का डॉट उत्पाद लेना इस समीकरण से यह प्राप्त होता है:
नोट किया कि समय-स्वतंत्र है, हम समीकरण पर पहुंचते हैं:
यह मानते हुए कि ऊर्जा घनत्व समय-स्वतंत्र है और प्रवाह एक-आयामी है, सरलीकरण की ओर ले जाता है:
साथ एक स्थिर होना; यह बर्नौली के सिद्धांत के समतुल्य है। विवृत चैनल प्रवाह में विशेष रुचि विशिष्ट ऊर्जा की है , जिसका उपयोग हाइड्रोलिक हेड की गणना करने के लिए किया जाता है इसे इस प्रकार परिभाषित किया गया है:
साथ विशिष्ट भार होना। यद्यपि, यथार्थवादी प्रणालियों के लिए शीर्ष क्षति टर्म को जोड़ने की आवश्यकता होती है घर्षण और अशांति के कारण होने वाली ऊर्जा अपव्यय को ध्यान में रखते हुए संवेग समीकरण में बाहरी बलों की अवधारणा को छूट देकर इसे नजरअंदाज कर दिया गया।