श्रवण की पूर्ण देहली (एटीएच)

From Vigyanwiki
Revision as of 10:29, 5 August 2023 by alpha>Akriti

श्रवण की पूर्ण अवसीमा (एटीएच) शुद्ध स्वर की एक ऐसी न्यूनतम ध्वनि तीव्रता स्तर है जिसे सामान्य श्रवण (भावना) वाला औसत मानव कर्ण के बिना किसी अन्य ध्वनि को सुन सकता है। पूर्ण अवसीमा उस ध्वनि से संबंधित है जिसे मात्र जीव द्वारा सुना जा सकता है।[1][2] पूर्ण अवसीमा अलग बिंदु नहीं है और इसलिए इसे उस बिंदु के रूप में वर्गीकृत किया जाता है जिस पर ध्वनि समय के निर्दिष्ट प्रतिशत पर प्रतिक्रिया उत्पन्न करती है।[1] इसे श्रवण अवसीमा के रूप में भी जाना जाता है।

सुनने की अवसीमा सामान्यतः 20 पास्कल (इकाई) के मूल माध्य वर्ग ध्वनि दबाव, अर्थात 0 डीबी एसपीएल के संदर्भ में बताई जाती है, जो 0.98 पीडब्लू/एम की ध्वनि तीव्रता के अनुरूप है।21 वायुमंडल और 25°C पर।[3] यह लगभग सबसे शांत ध्वनि है जिसे कोई युवा मानव बिना किसी क्षति के सुन सकता है, 1,000 हेटर्स ़ पर।[4] सुनने की अवसीमा आवृत्ति पर निर्भर है और यह दिखाया गया है कि कर्ण की संवेदनशीलता 2 किलोहर्ट्ज़ और 5 किलोहर्ट्ज़ के बीच आवृत्तियों पर सबसे अच्छी होती है।[5] जहां अवसीमा -9 डीबी एसपीएल जितनी कम हो जाती है।[6][7][8]

350x350pxs (SPL) (ऊर्ध्वाधर अक्ष पर दिखाई गई 'dB(HL)' की इकाई गलत है) को युवाओं (18-30 वर्ष के बच्चों, लाल घेरे) और वृद्ध वयस्कों (60-67 वर्ष के लोगों, काले हीरे) के लिए 125 से 8000 हर्ट्ज तक प्लॉट किया जाता है। 4000 और 8000 हर्ट्ज की आवृत्तियों पर वृद्ध वयस्कों की सुनवाई युवा वयस्कों की तुलना में काफी कम संवेदनशील दिखाई गई है, जो क्रमशः पियानो कुंजी आवृत्तियों और बी (बी7) और बी (बी8) के स्वरों के अनुरूप है। B8 पियानो कुंजी आवृत्तियाँ के उच्च अंत के निकट है।

दहलीज मापने के लिए मनोभौतिक तरीके

पूर्ण श्रवण अवसीमा का मापन हमारी श्रवण प्रणाली के बारे में कुछ बुनियादी जानकारी प्रदान करता है।[4]ऐसी जानकारी एकत्र करने के लिए उपयोग किए जाने वाले उपकरणों को मनोभौतिक विधियाँ कहा जाता है। इनके माध्यम से शारीरिक उत्तेजना (ध्वनि) की अनुभूति और ध्वनि के प्रति हमारी मनोवैज्ञानिक प्रतिक्रिया को मापा जाता है।[9] कई मनोभौतिकीय विधियाँ पूर्ण अवसीमा को माप सकती हैं। ये अलग-अलग हैं, लेकिन कुछ पहलू समान हैं। सबसे पहले, परीक्षण उत्तेजना को परिभाषित करता है और उस तरीके को निर्दिष्ट करता है जिसमें विषय को प्रतिक्रिया देनी चाहिए। परीक्षण श्रोता के सामने ध्वनि प्रस्तुत करता है और पूर्व निर्धारित पैटर्न में उत्तेजना स्तर में हेरफेर करता है। पूर्ण अवसीमा को सांख्यिकीय रूप से परिभाषित किया जाता है, अक्सर सभी प्राप्त श्रवण अवसीमाओं के औसत के रूप में।[4]

कुछ प्रक्रियाएँ परीक्षणों की श्रृंखला का उपयोग करती हैं, प्रत्येक परीक्षण में 'एकल-अंतराल हाँ/नहीं प्रतिमान' का उपयोग किया जाता है। इसका मतलब यह है कि ध्वनि अंतराल में मौजूद या अनुपस्थित हो सकती है, और श्रोता को यह बताना होगा कि क्या उसने सोचा था कि उत्तेजना थी। जब अंतराल में कोई उत्तेजना नहीं होती है, तो इसे कैच ट्रायल कहा जाता है।[4]


शास्त्रीय विधियाँ

शास्त्रीय विधियाँ 19वीं शताब्दी की हैं और इनका वर्णन सबसे पहले गुस्ताव थियोडोर फेचनर ने अपने कार्य एलिमेंट्स ऑफ साइकोफिजिक्स में किया था।[9]किसी विषय की उत्तेजना की धारणा का परीक्षण करने के लिए पारंपरिक रूप से तीन तरीकों का उपयोग किया जाता है: अवसीमा की विधि, निरंतर उत्तेजना की विधि, और समायोजन की विधि।[4]

सीमा की विधि
सीमा की विधि में, परीक्षक उत्तेजना के स्तर को नियंत्रित करता है। एकल-अंतराल हां/नहीं प्रतिमान का उपयोग किया जाता है, लेकिन कोई कैच परीक्षण नहीं हैं।
परीक्षण अवरोही और आरोही रन की कई श्रृंखलाओं का उपयोग करता है।
परीक्षण अवरोही दौर से शुरू होता है, जहां उत्तेजना अपेक्षित अवसीमा से काफी ऊपर के स्तर पर प्रस्तुत की जाती है। जब विषय उत्तेजना के प्रति सही ढंग से प्रतिक्रिया करता है, तो ध्वनि की तीव्रता का स्तर विशिष्ट मात्रा से कम हो जाता है और फिर से प्रस्तुत किया जाता है। यही पैटर्न तब तक दोहराया जाता है जब तक विषय उत्तेजनाओं पर प्रतिक्रिया देना बंद नहीं कर देता, जिस बिंदु पर अवरोही दौड़ समाप्त हो जाती है।
आरोही क्रम में, जो बाद में आता है, उत्तेजना को पहले अवसीमा से काफी नीचे प्रस्तुत किया जाता है और फिर धीरे-धीरे दो डेसिबल में बढ़ाया जाता है (dB) steps until the subject responds.
File:Method of limits.png
सीमा विधि में अवरोही और आरोही क्रम की श्रृंखला
चूंकि 'सुनना' और 'नहीं सुनना' के बीच कोई स्पष्ट अंतर नहीं है, इसलिए प्रत्येक दौड़ के लिए अवसीमा को अंतिम श्रव्य और पहले अश्रव्य स्तर के बीच मध्य बिंदु के रूप में निर्धारित किया जाता है।
विषय की पूर्ण श्रवण अवसीमा की गणना आरोही और अवरोही दोनों में प्राप्त सभी अवसीमाओं के माध्य के रूप में की जाती है।
सीमा की पद्धति से संबंधित कई मुद्दे हैं। पहला प्रत्याशा है, जो विषय की जागरूकता के कारण होता है कि टर्न-पॉइंट प्रतिक्रिया में बदलाव निर्धारित करते हैं। प्रत्याशा बेहतर आरोही सीमाएँ और बदतर अवरोही सीमाएँ उत्पन्न करती है।
आदत पूरी तरह से विपरीत प्रभाव पैदा करती है, और तब होती है जब विषय उतरते समय हां और/या बढ़ते समय नहीं में जवाब देने का आदी हो जाता है। इस कारण से, आरोही रनों में सीमाएँ बढ़ाई जाती हैं और अवरोही रनों में सुधार किया जाता है।
एक अन्य समस्या चरण आकार से संबंधित हो सकती है। बहुत बड़ा कदम माप की सटीकता से समझौता करता है क्योंकि वास्तविक अवसीमा मात्र दो प्रोत्साहन स्तरों के बीच हो सकती है।
अंततः, चूँकि स्वर हमेशा मौजूद रहता है, हाँ हमेशा सही उत्तर होता है।[4]
Method of constant stimuli
In the method of constant stimuli, the tester sets the level of stimuli and presents them at completely random order.
File:Method of Constant Stimuli.png
प्रत्येक प्रस्तुति के बाद विषय हाँ/नहीं में उत्तर दे रहा है
: इस प्रकार, कोई आरोही या अवरोही परीक्षण नहीं हैं।
विषय प्रत्येक प्रस्तुति के बाद हाँ/नहीं में उत्तर देता है।
उत्तेजनाओं को प्रत्येक स्तर पर कई बार प्रस्तुत किया जाता है और अवसीमा को उत्तेजना स्तर के रूप में परिभाषित किया जाता है जिस पर विषय ने 50% सही स्कोर किया है। इस पद्धति में कैच ट्रायल को शामिल किया जा सकता है।
निरंतर उत्तेजना की विधि में अवसीमा की विधि की तुलना में कई फायदे हैं। सबसे पहले, उत्तेजनाओं के यादृच्छिक क्रम का मतलब है कि श्रोता द्वारा सही उत्तर की भविष्यवाणी नहीं की जा सकती है। दूसरे, चूँकि स्वर अनुपस्थित हो सकता है (कैच ट्रायल), हाँ हमेशा सही उत्तर नहीं होता है। अंत में, कैच ट्रायल से श्रोता के अनुमान की मात्रा का पता लगाने में मदद मिलती है।
मुख्य नुकसान डेटा प्राप्त करने के लिए बड़ी संख्या में परीक्षणों की आवश्यकता है, और इसलिए परीक्षण को पूरा करने के लिए आवश्यक समय है।[4]
Method of adjustment
Method of adjustment shares some features with the method of limits, but differs in others. There are descending and ascending runs and the listener knows that the stimulus is always present.
File:Method of Adjustment.png
विषय स्वर के स्तर को कम या बढ़ा देता है
: हालाँकि, अवसीमा पद्धति के विपरीत, यहाँ उत्तेजना को श्रोता द्वारा नियंत्रित किया जाता है। विषय स्वर के स्तर को तब तक कम कर देता है जब तक कि इसका पता नहीं लगाया जा सके, या इसे तब तक बढ़ा देता है जब तक कि इसे दोबारा सुना न जा सके।
उत्तेजना स्तर को डायल के माध्यम से लगातार बदला जाता है और अंत में परीक्षक द्वारा उत्तेजना स्तर को मापा जाता है। दहलीज सिर्फ श्रव्य और सिर्फ अश्रव्य स्तरों का माध्य है।
इसके अलावा यह विधि कई पूर्वाग्रह उत्पन्न कर सकती है। वास्तविक प्रोत्साहन स्तर के बारे में संकेत देने से बचने के लिए, डायल को लेबल रहित होना चाहिए। पहले से उल्लिखित प्रत्याशा और आदत के अलावा, उत्तेजना की दृढ़ता (संरक्षण) समायोजन की विधि से परिणाम को प्रभावित कर सकती है।
अवरोही दौड़ में, विषय ध्वनि के स्तर को कम करना जारी रख सकता है जैसे कि ध्वनि अभी भी श्रव्य थी, भले ही उत्तेजना पहले से ही वास्तविक श्रवण अवसीमा से काफी नीचे हो।
इसके विपरीत, आरोही दौर में, विषय में उत्तेजना की अनुपस्थिति तब तक बनी रह सकती है जब तक कि श्रवण अवसीमा निश्चित मात्रा से पार न हो जाए।[10]


संशोधित शास्त्रीय विधियाँ

जबरन-पसंद के तरीके

श्रोता को दो अंतराल प्रस्तुत किए जाते हैं, स्वर के साथ और बिना स्वर के। श्रोता को यह तय करना होगा कि किस अंतराल में स्वर था। अंतरालों की संख्या बढ़ाई जा सकती है, लेकिन इससे श्रोता के लिए समस्याएँ पैदा हो सकती हैं, जिन्हें यह याद रखना होगा कि किस अंतराल में स्वर था।[4][11]


अनुकूली विधियाँ

शास्त्रीय तरीकों के विपरीत, जहां उत्तेजनाओं को बदलने का पैटर्न पूर्व निर्धारित होता है, अनुकूली तरीकों में पिछली उत्तेजनाओं के प्रति विषय की प्रतिक्रिया उस स्तर को निर्धारित करती है जिस पर बाद की उत्तेजना प्रस्तुत की जाती है।[12]


सीढ़ी (ऊपर-नीचे) विधियाँ

File:Simple Up-Down Method.png
अवरोही और आरोही परीक्षणों की श्रृंखला चलती है और मोड़ आते हैं

सरल 1-डाउन-1-अप विधि में अवरोही और आरोही ट्रायल रन और टर्निंग पॉइंट (रिवर्सल) की श्रृंखला शामिल है। यदि विषय प्रतिक्रिया नहीं देता है तो उत्तेजना का स्तर बढ़ जाता है और प्रतिक्रिया होने पर उत्तेजना का स्तर कम हो जाता है। अवसीमा की विधि के समान, उत्तेजनाओं को पूर्व निर्धारित चरणों में समायोजित किया जाता है। छह से आठ उलटफेर प्राप्त करने के बाद, पहले वाले को छोड़ दिया जाता है और अवसीमा को शेष रनों के मध्य बिंदुओं के औसत के रूप में परिभाषित किया जाता है। प्रयोगों से पता चला है कि यह विधि मात्र 50% सटीकता प्रदान करती है।[12]अधिक सटीक परिणाम उत्पन्न करने के लिए, इस सरल विधि को अवरोही रनों में चरणों के आकार को बढ़ाकर और संशोधित किया जा सकता है, उदाहरण के लिए। 2-डाउन-1-अप विधि, 3-डाउन-1-अप विधियाँ।[4]


बेकेसी की ट्रैकिंग विधि

File:Bekesy's Tracking Method.png
श्रोता द्वारा दहलीज पर नज़र रखी जा रही है

बेकेसी की विधि में शास्त्रीय विधियों और सीढ़ी विधियों के कुछ पहलू शामिल हैं। उत्तेजना का स्तर निश्चित दर पर स्वचालित रूप से भिन्न होता है। जब उत्तेजना का पता लगाया जा सके तो विषय को बटन दबाने के लिए कहा जाता है। बार बटन दबाने पर, मोटर-चालित एटेन्यूएटर (इलेक्ट्रॉनिक्स) द्वारा स्तर स्वचालित रूप से कम हो जाता है और बटन नहीं दबाने पर स्तर बढ़ जाता है। इस प्रकार दहलीज को श्रोताओं द्वारा ट्रैक किया जाता है, और ऑटोमेट द्वारा रिकॉर्ड किए गए रनों के मध्य बिंदुओं के माध्य के रूप में गणना की जाती है।[4]


हिस्टैरिसीस प्रभाव

हिस्टैरिसीस को मोटे तौर पर 'किसी प्रभाव का उसके कारण से पीछे रह जाना' के रूप में परिभाषित किया जा सकता है। श्रवण अवसीमा को मापते समय विषय के लिए उस स्वर का अनुसरण करना हमेशा आसान होता है जो श्रव्य है और आयाम में घट रहा है बजाय उस स्वर का पता लगाने के जो पहले अश्रव्य था।

ऐसा इसलिए है क्योंकि 'ऊपर से नीचे' प्रभावों का मतलब है कि विषय ध्वनि सुनने की उम्मीद करता है और इसलिए, उच्च स्तर की एकाग्रता के साथ अधिक प्रेरित होता है।

'बॉटम-अप' सिद्धांत बताता है कि अवांछित बाहरी (पर्यावरण से) और आंतरिक (उदाहरण के लिए, दिल की धड़कन) शोर के परिणामस्वरूप विषय मात्र ध्वनि पर प्रतिक्रिया करता है यदि सिग्नल-टू-शोर अनुपात निश्चित बिंदु से ऊपर है।

In practice this means that when measuring threshold with sounds decreasing in amplitude, the point at which the sound becomes inaudible is always lower than the point at which it returns to audibility. This phenomenon is known as the 'hysteresis effect'.

File:Hysteresis.png
आरोही दौड़ की तुलना में अवरोही दौड़ बेहतर श्रवण क्षमता प्रदान करती है

पूर्ण श्रवण अवसीमा का साइकोमेट्रिक कार्य

साइकोमेट्रिक फ़ंक्शन 'अध्ययन की जा रही विशेष ध्वनि विशेषता के परिमाण के फ़ंक्शन के रूप में निश्चित श्रोता की प्रतिक्रिया की संभावना का प्रतिनिधित्व करता है'।[13] एक उदाहरण देने के लिए, यह ध्वनि का पता लगाने वाले विषय का संभाव्यता वक्र हो सकता है जिसे ध्वनि स्तर के फ़ंक्शन के रूप में प्रस्तुत किया जा रहा है। जब श्रोता को उद्दीपन प्रस्तुत किया जाता है तो कोई अपेक्षा करता है कि ध्वनि या तो श्रव्य होगी या अश्रव्य होगी, जिसके परिणामस्वरूप 'डोरस्टेप' फ़ंक्शन होगा। वास्तव में धूसर क्षेत्र मौजूद होता है जहां श्रोता अनिश्चित होता है कि उसने वास्तव में ध्वनि सुनी है या नहीं, इसलिए उनकी प्रतिक्रियाएं असंगत होती हैं, जिसके परिणामस्वरूप साइकोमेट्रिक फ़ंक्शन होता है।

साइकोमेट्रिक फ़ंक्शन सिग्मॉइड फ़ंक्शन है जो इसके ग्राफिकल प्रतिनिधित्व में 's' आकार का होता है।

न्यूनतम श्रव्य क्षेत्र और न्यूनतम श्रव्य दबाव

न्यूनतम श्रव्य उत्तेजना को मापने के लिए दो तरीकों का उपयोग किया जा सकता है[2]और इसलिए सुनने की पूर्ण सीमा। न्यूनतम श्रव्य क्षेत्र में विषय को ध्वनि क्षेत्र में बैठाया जाता है और लाउडस्पीकर के माध्यम से उत्तेजना प्रस्तुत की जाती है।[2][14] फिर ध्वनि स्तर को विषय के सिर की स्थिति पर मापा जाता है, विषय ध्वनि क्षेत्र में नहीं होता है।[2]न्यूनतम श्रव्य दबाव में हेडफ़ोन के माध्यम से उत्तेजनाओं को प्रस्तुत करना शामिल है[2]या इयरफ़ोन[1][14]और बहुत छोटे जांच माइक्रोफोन का उपयोग करके विषय के कर्ण नहर में ध्वनि दबाव को मापना।[2]दो अलग-अलग विधियाँ अलग-अलग सीमाएँ उत्पन्न करती हैं[1][2]और न्यूनतम श्रव्य क्षेत्र सीमाएँ अक्सर न्यूनतम श्रव्य दबाव अवसीमा से 6 से 10 डीबी बेहतर होती हैं।[2]ऐसा माना जाता है कि यह अंतर निम्न कारणों से है:

  • मोनोरल बनाम बाइन्यूरल (बहुविकल्पी) श्रवण. न्यूनतम श्रव्य क्षेत्र के साथ दोनों कर्ण उत्तेजनाओं का पता लगाने में सक्षम होते हैं लेकिन न्यूनतम श्रव्य दबाव के साथ मात्र कर्ण उत्तेजनाओं का पता लगाने में सक्षम होता है। मोनोऑरल श्रवण की तुलना में द्विकर्ण श्रवण अधिक संवेदनशील होता है/[1]* न्यूनतम श्रव्य दबाव माप के दौरान कर्ण को ईयरफोन से बंद करने पर शारीरिक शोर सुनाई देता है।[2]जब कर्ण ढका होता है तो व्यक्ति को शरीर की आवाजें सुनाई देती हैं, जैसे दिल की धड़कन, और इनका छिपा हुआ प्रभाव हो सकता है।

अंशांकन मुद्दों पर विचार करते समय न्यूनतम श्रव्य क्षेत्र और न्यूनतम श्रव्य दबाव महत्वपूर्ण होते हैं और वे यह भी दर्शाते हैं कि मानव श्रवण 2-5 किलोहर्ट्ज़ रेंज में सबसे संवेदनशील है।[2]


अस्थायी योग

अस्थायी योग उत्तेजना की अवधि और तीव्रता के बीच का संबंध है जब प्रस्तुति का समय 1 सेकंड से कम होता है। जब ध्वनि की अवधि 1 सेकंड से कम हो जाती है तो श्रवण संवेदनशीलता बदल जाती है। जब टोन फटने की अवधि 20 से 200 एमएस तक बढ़ जाती है तो थ्रेसहोल्ड तीव्रता लगभग 10 डीबी कम हो जाती है।

उदाहरण के लिए, मान लीजिए कि यदि ध्वनि 200 एमएस की अवधि में प्रस्तुत की जाती है तो विषय द्वारा सुनी जाने वाली सबसे शांत ध्वनि 16 डीबी एसपीएल है। यदि वही ध्वनि मात्र 20 एमएस की अवधि के लिए प्रस्तुत की जाती है, तो विषय द्वारा सुनी जा सकने वाली सबसे शांत ध्वनि 26 डीबी एसपीएल तक जाती है। दूसरे शब्दों में, यदि किसी सिग्नल को 10 के कारक से छोटा किया जाता है तो विषय को सुनने के लिए उस सिग्नल के स्तर को 10 डीबी तक बढ़ाना होगा।

कर्ण ऊर्जा डिटेक्टर के रूप में कार्य करता है जो निश्चित समय अवसीमा के भीतर मौजूद ऊर्जा की मात्रा का नमूना लेता है। अवसीमा तक पहुँचने के लिए समय अवसीमा के भीतर निश्चित मात्रा में ऊर्जा की आवश्यकता होती है। यह कम समय के लिए उच्च तीव्रता का उपयोग करके या अधिक समय के लिए कम तीव्रता का उपयोग करके किया जा सकता है। ध्वनि के प्रति संवेदनशीलता में सुधार होता है क्योंकि सिग्नल की अवधि लगभग 200 से 300 एमएस तक बढ़ जाती है, उसके बाद अवसीमा स्थिर रहती है।[2]

कर्ण की टिमपनी ध्वनि दबाव सेंसर के रूप में अधिक काम करती है। साथ ही माइक्रोफ़ोन भी इसी तरह काम करता है और ध्वनि की तीव्रता के प्रति संवेदनशील नहीं होता है।

यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 1.3 1.4 Durrant J D., Lovrinic J H. 1984. Bases of Hearing Sciences. Second Edition. United States of America: Williams & Wilkins
  2. 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 Gelfand S A., 2004. Hearing an Introduction to Psychological and Physiological Acoustics. Fourth edition. United States of America: Marcel Dekker
  3. RMS sound pressure can be converted to plane wave sound intensity using , where ρ is the density of air and is the speed of sound
  4. 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 Gelfand, S A., 1990. Hearing: An introduction to psychological and physiological acoustics. 2nd edition. New York and Basel: Marcel Dekker, Inc.
  5. Johnson, Keith (2015). ध्वनिक और श्रवण ध्वन्यात्मकता (third ed.). Wiley-Blackwell.
  6. Jones, Pete R (November 20, 2014). "What's the quietest sound a human can hear?" (PDF). University College London. Archived from the original (PDF) on 2016-03-24. Retrieved 2016-03-16. On the other hand, you can also see in Figure 1 that our hearing is slightly more sensitive to frequencies just above 1 kHz, where thresholds can be as low as −9 dBSPL!
  7. Feilding, Charles. "Lecture 007 Hearing II". College of Santa Fe Auditory Theory. Archived from the original on 2016-05-07. Retrieved 2016-03-17. The peak sensitivities shown in this figure are equivalent to a sound pressure amplitude in the sound wave of 10 μPa or: about -6 dB(SPL). Note that this is for monaural listening to a sound presented at the front of the listener. For sounds presented on the listening side of the head there is a rise in peak sensitivity of about 6 dB [−12 dB SPL] due to the increase in pressure caused by reflection from the head.
  8. Montgomery, Christopher. "24/192 Music Downloads ...and why they make no sense". xiph.org. Archived from the original on 2016-03-14. Retrieved 2016-03-17. The very quietest perceptible sound is about -8dbSPL
  9. 9.0 9.1 Hirsh I J.,1952. "The Measurement of Hearing". United States of America: McGraw-Hill.
  10. Hirsh I J.,Watson C S., 1996. Auditory Psychophysics and Perception. Annu. Rev. Psychol. 47: 461–84. Available to download from: http://arjournals.annualreviews.org/doi/pdf/10.1146/annurev.psych.47.1.461 . Accessed 1 March 2007.
  11. Miller et al., 2002. "Nonparametric relationships between single-interval and two-interval forced-choice tasks in the theory of signal detectability". Journal of Mathematical Psychology archive. 46:4;383–417. Available from: http://portal.acm.org/citation.cfm?id=634580. Accessed 1 March 2007.
  12. 12.0 12.1 Levitt H. (1971). "मनोध्वनिकी में परिवर्तित ऊपर-नीचे विधियाँ". J. Acoust. Soc. Amer. 49 (2): 467–477. doi:10.1121/1.1912375. PMID 5541744. Retrieved 1 March 2007.
  13. Arlinger, S. 1991. Manual of Practical Audiometry: Volume 2 (Practical Aspects of Audiology). Chichester: Whurr Publishers.
  14. 14.0 14.1 Kidd G. 2002. Psychoacoustics IN Handbook of Clinical Audiology. Fifth Edition.


बाहरी संबंध