हेलोक्वाड्राटम वाल्स्बी

From Vigyanwiki
Revision as of 16:00, 27 July 2023 by alpha>Vivekdasilavky (Text)

colspan=2 style="text-align: center; background-color: transparent; text-align:center; border: 2px solid red; error:colour" | हेलोक्वाड्राटम वाल्स्बी
Haloquadratum walsbyi00.jpg
colspan=2 style="min-width:15em; text-align: center; background-color: transparent; text-align:center; border: 2px solid red; error:colour" | Scientific classification
Domain:
Phylum:
Class:
Order:
Family:
Genus:
Species:
एच. वाल्स्बी
colspan=2 style="text-align: center; background-color: transparent; text-align:center; border: 2px solid red; error:colour" | Binomial name
हेलोक्वाड्रैटम वाल्स्बी
बर्न्स एट अल. 2007

हेलोक्वाड्राटम वाल्स्बी आर्किया संघ के भीतर हेलोक्वाड्राटम प्रजाति का है, जो अपने चौकोर लवणरागी प्रकृति के लिए जाना जाता है।[1] सबसे पहले मिस्र के सिनाई प्रायद्वीप में एक लवणीय पूल में खोजा गया, एच. वाल्स्बी अपने सपाट, चौकोर आकार की कोशिकाओं और सोडियम क्लोराइड और मैग्नीशियम क्लोराइड की उच्च सांद्रता वाले जलीय वातावरण में जीवित रहने की असामान्य क्षमता के लिए जाना जाता है। [2][1] प्रजातियों का प्रजाति नाम हेलोक्वाड्राटम ग्रीक और लैटिन से "साल्ट स्क्वायर" के रूप में अनुवाद करता है। इस आर्कियन को प्रायः "वालस्बीज़ स्क्वायर बैक्टीरिया" के रूप में भी जाना जाता है क्योंकि इसकी पहचान चौकोर आकार की होती है जो इसे अद्वितीय बनाती है।[3] अपने नाम के अनुसार, हेलोक्वाड्राटम वाल्स्बी लवण वातावरण में सबसे अधिक मात्रा में पाए जाते हैं।

हेलोक्वाड्राटम वाल्स्बी एक फोटोट्रॉफिक हलोपलिक आर्कियोन है। 1999 तक हेलोक्वाड्राटम प्रजाति की एकमात्र अभिज्ञात प्रजाति थी, जब हेलोआर्कुला क्वाड्रेटा को लवणीय पूल से पाये जाने की सूचना मिली थी।[2]हेलोक्वाड्राटम वाल्स्बी अपनी अनूठी कोशिकीय संरचना के कारण बहुत ही असामान्य है जो लगभग पूरी तरह से सपाट आकार की आकृति जैसा दिखता है।

प्रजाति को पहली बार 1980 में एक ब्रिटिश माइक्रोबायोलॉजिस्ट, प्रो. एंथनी ई. वाल्स्बी द्वारा मिस्र के दक्षिणी सिनाई, मिस्र में एक लवणीय झील, सब्खा गैविश से लिए गए नमूनों से देखा गया था। इस खोज का औपचारिक रूप से 2007 में बर्न्स एट अल द्वारा वर्णन किया गया है। आर्किया को विकसित करने के प्रयास 2004 तक असफल रहे थे और इसके परिणामस्वरूप हेलोआर्कुला क्वाड्रेटा की पहचान हुई, जो प्रजाति हेलोआर्कुला के वर्गाकार आर्किया की एक और प्रजाति है, जो एच. वाल्सबी से अलग है, कम प्रचुर मात्रा में है और आनुवंशिक रूप से काफी भिन्न है।

विवरण

हेलोक्वाड्राटम वाल्स्बी कोशिकाओं का आकार 2 से 5 माइक्रोन और 100 से 200 नैनोमीटर मोटा होता है। आर्किया में प्रायः पॉलीहाइड्रॉक्सीअल्कानोएट्स के ग्रेन्युल (कोशिका जीव विज्ञान) होते हैं और कई अपवर्तक रिक्तिकाएं गैस पुटिका होते हैं जो जलीय वातावरण में उछाल सुनिश्चित करते हैं, और अधिकतम अवशोषण (विद्युत चुम्बकीय विकिरण) की अनुमति देते हैं। 1980 में वाल्बी द्वारा आर्कियन की संरचना में इंट्रासेल्युलर अपवर्तक निकायों की पहचान निर्धारित करते समय इन गैस रिक्तिका की खोज की गई थी।[3]वे 40 माइक्रोन चौड़ी तक की चादरों में इकट्ठा होते हैं, लेकिन कोशिका का आसंजन नाजुक होता है और आसानी से तोड़ा जा सकता है।[4]

ये जीव बहुत खारे पानी के किसी भी हिस्से में पाए जा सकते हैं। सॉल्ट झील के दौरान, कैल्शियम कार्बोनेट (CaCO3) और कैल्शियम सल्फेट (CaSO4) पहले अवक्षेपित करें, जिससे सोडियम क्लोराइड NaCl से भरपूर ब्राइन बनता है। यदि वाष्पीकरण जारी रहता है, तो NaCl सेंधा नमक के रूप में अवक्षेपित हो जाता है, जिससे मैग्नीशियम क्लोराइड (MgCl) से भरपूर ब्राइन निकल जाता है।2). H. Walsbyi हैलाइट के अवक्षेपण के अंतिम चरण के दौरान फलता-फूलता है, और इस माध्यम का 80% विकट: बायोमास का गठन कर सकता है।[citation needed] हेलोक्वाड्राटम वाल्स्बी कोशिकाओं को धुंधला होने के माध्यम से ग्राम-नकारात्मक होना निर्धारित किया गया है और जब एक प्रयोगशाला में उगाया जाता है तो वृद्धि के लिए सबसे अच्छी निर्धारित स्थिति तटस्थ पीएच पर 18% लवण के साथ एक मीडिया है।[5] H. walsbyi का जीनोम संपूर्ण जीनोम अनुक्रमण रहा है, जिससे इस जीव के phylogenetic और taxonomic वर्गीकरण की बेहतर समझ और पारिस्थितिकी तंत्र में इसकी भूमिका की अनुमति मिलती है। स्पैनिश और ऑस्ट्रेलियाई आनुवंशिक अलगाव (तनाव (जीव विज्ञान) ) HBSQ001 और C23 का तुलनात्मक जीनोमिक्सT) तेजी से वैश्विक फैलाव का दृढ़ता से सुझाव देता है, क्योंकि वे उल्लेखनीय रूप से समान हैं और उन्होंने सिंटेनी को बनाए रखा है।[citation needed]

प्रयोगशाला में इसकी वृद्धि बहुत उच्च क्लोराइड सांद्रता वाले माध्यम में प्राप्त की गई थी (2 mol·L-1 MgCl का2 और 3 मोल से अधिक · एल -1NaCl का), इस जीव को सबसे Halotolerance के रूप में जाना जाता है। इसका जीवाणु विकास तापमान 40 °C है, जो इस आर्किया को मेसोफाइल बनाता है।

<गैलरी मोड = पैक्ड स्टाइल = फ्लोट: लेफ्ट हाइट्स = 240 पीएक्स>

File:Optical phase-contrast microscopy image of a हेलोक्वाड्राटम वाल्स्बी square cell - PLoS ONE.png| एक हेलोक्वाड्राटम वाल्स्बी वर्ग सेल की ऑप्टिकल चरण-विपरीत माइक्रोस्कोपी छवि। कई प्रकाश बिंदु गैस वेसिकल्स हैं जो सतह पर तैरने की अनुमति देते हैं, ऑक्सीजन प्राप्त करने की सबसे अधिक संभावना है।[4]

Scale bar 1 µm

File:Microorganisms from the hypersaline Lake Tyrrell.jpg| हाइपरसैलिन टाइरेल झील से सूक्ष्म छवि, जिसमें नारंगी क्लोरोफाइट डुनालिएला सलीना को अस्थायी रूप से पहचाना जा सकता है, साथ में कई छोटे हेलोक्वाड्राटम वाल्स्बी, उनके फ्लैट चौकोर आकार की कोशिकाओं को दिखाते हैं। </गैलरी>

विविधता

दुनिया भर में नमक की ब्राइन में आश्चर्यजनक रूप से उच्च मात्रा में कोशिकाएं हेलोक्वाड्राटम वाल्स्बी, 80% तक होती हैं। नमक लवणीय वातावरण में आनुवंशिक विविधता की जांच के लिए प्रयोग किए गए हैं। प्राकृतिक वातावरण में सात अलग-अलग प्रकार के एच. वाल्स्बी के जीनोमिक द्वीप की खोज की गई है।[6] एच. वाल्स्बी के लिए मेटागेनोमिक्स fosmids लाइब्रेरी की जांच करने के बाद, दो प्रकार के सेल-वॉल से जुड़े द्वीपों की पहचान की गई। इन द्वीपों के जीनों में ग्लाइकोप्रोटीन जैसी सतह परत संरचनाओं के संश्लेषण के लिए जिम्मेदार जीन और सेल लिफाफे के संश्लेषण के लिए जिम्मेदार जीन शामिल हैं।[3]सजातीय पुनर्संयोजन ऊपर उल्लिखित जीनों को बनाए रखने और इसके प्राकृतिक वातावरण में मेटाजेनोम की विविधता के लिए जिम्मेदार है। विभिन्न H. Walsbyi कोशिकाओं पर सतह की संरचना समग्र रूप से जनसंख्या के लिए वंश के स्रोतों को अलग करने में मदद करती है। ये भिन्न संरचनाएं उनके प्राकृतिक वातावरण में कोशिकाओं की विविधता को भी बढ़ाती हैं। कोशिका संरचना में ये परिवर्तन कोशिकाओं द्वारा वाइरस द्वारा हमला करने की उनकी संवेदनशीलता को कम करने के प्रयासों के कारण हो सकते हैं।[6]2009 में ऑस्ट्रेलिया में तीन अलग-अलग लवणीय क्रिस्टलाइज़र तालाबों में एच. वाल्स्बी की विविधता का निर्धारण करने के लिए एक प्रयोग किया गया था। अलग-अलग क्षेत्रों में स्थित तीनों पूलों में वे सभी दो 97% -OTU दोनों Haloquadratum और Halorubrum -समान अनुक्रमों को साझा करते हैं।[7]


जीनोमिक्स और संरचना

एच. वाल्स्बी को ओलिगोट्रॉफ़ सूक्ष्मजीव के रूप में वर्गीकृत किया गया है, क्योंकि यह पोषक तत्वों की कमी की स्थिति में बढ़ता है जहां कार्बनिक पदार्थों की सांद्रता न्यूनतम होती है। मुकाबला करने के लिए, H. walsbyi पोषक तत्व ग्रहण को अधिकतम करने के लिए चपटा करके एक उच्च सतह-क्षेत्र-से-आयतन अनुपात बनाए रखता है। उनके Haloquadratum के कारण, वे वृत्त के आकार के सूक्ष्मजीवों की तुलना में समतल करने में अधिक सक्षम हैं।[1]H. Walsbyi लगभग 0.1-0.5μm की चरम मात्रा को समतल कर सकता है। सेल संरचना का समग्र आकार 1.5 से 11 माइक्रोन तक होता है। हालाँकि, बड़ी कोशिकाएँ देखी गई हैं। सबसे बड़ी रिकॉर्ड की गई एच. वाल्स्बी सेल को 40 x 40 माइक्रोन के रूप में मापा गया था।[8]

H. walsbyi का चौकोर आकार कई अध्ययनों का केंद्र बिंदु रहा है। यह अपने अनुकूलन के कारण इस संरचना को बनाए रखने में सक्षम है।[1]ये लक्षण एच. वाल्स्बी की जीनोम संरचना और साथ ही इसके प्रोटीन अनुक्रम दोनों में पाए जा सकते हैं। उदाहरण के लिए, H.walsbyi की विक्षनरी की अभिव्यक्ति: हेलोम्यूसिन प्रोटीन एक जलीय सुरक्षात्मक परत बनाता है जो कोशिकाओं के सुखाने को रोकने में मदद करता है।[9] ये अनुकूलन H. walsbyi को परिभाषित वर्ग संरचना को बनाए रखते हुए संतृप्त ब्राइन जैसे वातावरण में फलने-फूलने की अनुमति देते हैं।[1]

एच. वाल्स्बी की कोशिकीय संरचना में अत्यधिक अपवर्तक गैस पुटिकाएं, पॉलीहाइड्रॉक्सीअल्कानोएट्स|पॉली-बीटा-हाइड्रॉक्सीअल्कानोएट कणिकाएं, और एक अनूठी कोशिकीय दीवार होती है।[9]इस माइक्रोब ने सेल वॉल प्रदर्शित की है जिसकी मोटाई 15 से 25 एनएम के बीच है। H.walsbyi का जीनोम कोशिका भित्ति के S-स्तरित ग्लाइकोप्रोटीन को कूटबद्ध करता है। इसके अतिरिक्त, झिल्ली के लिए प्रकाश द्वारा सहज प्रभावित रेटिनल प्रोटीन भी एन्कोड किए जाते हैं।[9]2004 में खोजे गए HBSQ001 तनाव ने इन्हीं आंतरिक सेलुलर संरचनाओं को दिखाया। हालाँकि, इस विशिष्ट तनाव ने एक जटिल ट्राइकोटोमस संरचित कोशिका भित्ति दिखाई।[9]

एच. वाल्स्बी के एक विशिष्ट जीनोम में 3,132,494 बीपी क्रोमोसोम होता है। इस डेटा को प्राप्त करने के लिए स्ट्रेन HBSQ001, DSM 16790 का विश्लेषण किया गया था। H. walsbyi असामान्य रूप से निम्न GC-सामग्री | गुआनाइन-साइटोसिन (GC) सामग्री द्वारा अन्य हेलोआर्चिया की तुलना में प्रतिष्ठित है। अपेक्षित 60-70% की तुलना में एच. वाल्स्बी की औसत 47.9% जीसी सामग्री है। इसके अतिरिक्त, एन्कोडेड प्रोटीन विशेष रूप से अमीनो एसिड अनुक्रम में संरक्षित अनुक्रम हैं। यह समझा जाता है कि एच। वाल्स्बी एक विशिष्ट जीसी समृद्ध, मध्यम रूप से संरक्षित पूर्वज से विकसित हुआ।[1]


इतिहास

हेलोक्वाड्राटम वाल्स्बी Archaea की खोज सबसे पहले 1980 में एक सूक्ष्म जीव विज्ञान के प्रोफेसर A.E. Walsby|Anthony E. Walsby द्वारा की गई थी।[10] शुरू में सूक्ष्म जीव का नाम उनके नाम पर रखा गया था "वाल्सबी के वर्ग जीवाणु, जैसा कि आर्किया कार्यक्षेत्र को पूर्ण रूप से स्वीकार किए जाने से पहले इसकी खोज की गई थी। रेफरी>{{cite journal | vauthors = Legault BA, Lopez-Lopez A, Alba-Casado JC, Doolittle WF, Bolhuis H, Rodriguez-Valera F, Papke RT | title = एक लवणीय क्रिस्टलाइज़र में "हेलोक्वाड्राटम वाल्स्बी" का पर्यावरण जीनोमिक्स एक अन्यथा सुसंगत प्रजातियों में सहायक जीनों के एक बड़े पूल को इंगित करता है।| journal = BMC Genomics | volume = 7 | issue = 1 | pages = 171 | date = July 2006 | pmid = 16820057 | pmc = 1560387 | doi = 10.1186/1471-2164-7-171 }</ref> अब इसे औपचारिक रूप से हेलोक्वाड्राटम वाल्स्बी के रूप में जाना जाता है, और एक प्रसिद्ध Halophilic बैक्टीरिया आर्किया माना जाता है। इसके अतिरिक्त, यह एक चौकोर सेलुलर आकार के साथ खोजे गए पहले आर्किया में से एक माना जाता है। रेफरी>Lobasso S, Lopalco P, Mascolo G, Corcelli A (December 2008). "अल्ट्रा-थिन स्क्वायर हेलोफिलिक आर्कियोन हेलोक्वाड्रैटम वाल्स्बी के लिपिड". Archaea. 2 (3): 177–183. doi:10.1155/2008/870191. PMC 2685597. PMID 19054744.</ref>

एच. वाल्स्बी के अद्वितीय आकार के अवलोकन पर, प्रजातियों का अध्ययन करने वाले वैज्ञानिकों के लिए खेती करना एक लक्ष्य रहा है। शुद्ध संस्कृतियों को बनाए रखने के लिए हाइपर-सलाइन मीडिया को एक पर्याप्त माध्यम पाया गया है।[11] एच. वाल्स्बी आज ज्ञात सबसे बड़े प्रोकैरियोट्स में से एक है और इसमें लगभग 3 मिलियन बेसपेयर हैं।[11]

जैसा कि पहले उल्लेख किया गया है, इस विशिष्ट सूक्ष्म जीव की खोज का स्थान सिनाई प्रायद्वीप के भीतर मिस्र के अंतरमहाद्वीपीय देश में था।[4]हालाँकि, इस खोज के साथ एक विस्तारित अवधि भी आई जिसमें एच. वाल्स्बी के पूर्ण अलगाव को प्राप्त करने के लिए गहन परीक्षण और त्रुटि प्रयास शामिल थे। इस सूक्ष्मजीव को पूरी तरह से अलग करना कितना मुश्किल था, एच. वाल्स्बी की शारीरिक प्रक्रियाओं और जीनोमिक संरचना पर ज्ञात जानकारी में एक बड़ा अंतर मौजूद था।[4]हालांकि 2004 में, एच. वाल्स्बी के दो स्ट्रेन (जीव विज्ञान) को सफलतापूर्वक अलग कर दिया गया और अनुक्रमण करने में सक्षम बनाया गया।[10]दूसरा तनाव एक ऑस्ट्रेलियाई आइसोलेट था, जिसे C23 कहा जाता था।[10]पांच उपभेदों को अतिरिक्त रूप से अलग किया गया था, कुल मिलाकर एच। वाल्स्बी के सात अलग-थलग थे।[12] एक विशिष्ट हाइपरसैलिन झील के वातावरण में, टायरेल झील, हेलोक्वाड्राटम वाल्स्बी ने आर्किया के लगभग 38% समुदाय का निर्माण किया, जब पारिस्थितिक तंत्र को सुसंस्कृत किया गया था।[13]


सामान्य माइक्रोबायोटा

आर्कियोन हेलोक्वाड्राटम वाल्स्बी लाल लवणीय पानी, नमक की झीलों और सोलर साल्टर क्रिस्टलाइजर तालाबों में प्रचुर मात्रा में है।[14] उथले तालाब जो एक दूसरे से जुड़े हुए हैं और लवणता में वृद्धि करते हैं। रेफरी>{{cite journal | vauthors = Antón J, Rosselló-Mora R, Rodríguez-Valera F, Amann R | title = सौर साल्टर्न से क्रिस्टलाइज़र तालाबों में अत्यधिक हालोफिलिक बैक्टीरिया| journal = Applied and Environmental Microbiology | volume = 66 | issue = 7 | pages = 3052–3057 | date = July 2000 | pmid = 10877805 | pmc = 92110 | doi = 10.1128/aem.66.7.3052-3057.2000 | bibcode = 2000ApEnM..66.3052A }</ref> बैक्टीरियोहोडोप्सिन, एक झिल्ली प्रोटीन जो हाइड्रोजन-आयन पंप को चलाने के लिए प्रकाश से ऊर्जा का उपयोग करता है, रेफरी>Henderson R, Schertler GF (January 1990). "बैक्टीरियोरोडोप्सिन की संरचना और दृश्य ऑप्सिन और अन्य सात-हेलिक्स जी-प्रोटीन युग्मित रिसेप्टर्स के लिए इसकी प्रासंगिकता". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 326 (1236): 379–389. Bibcode:1990RSPTB.326..379H. doi:10.1098/rstb.1990.0019. PMID 1970644.</ref> जो हेलोक्वाड्राटम वाल्स्बी में पाए जाते हैं प्रकाश से ऊर्जा को अवशोषित करते हैं और इन ब्राइनों के भीतर समुदायों में पाए जाते हैं।[14]इन बैक्टीरियोहोडोप्सिन का उपयोग हेलोक्वाड्राटम वाल्स्बी की photoheterotroph प्रकृति को दर्शाता है। मैग्नीशियम क्लोराइड से भरपूर होने के साथ-साथ नमक से संतृप्त वातावरण जिसमें यह आर्कियन रहता है, पानी के भीतर बहुत कम गतिविधि होती है जो शुष्कता तनाव का कारण बनती है। इन नमक संतृप्त वातावरण में औसत समुद्री जल की तुलना में दस गुना अधिक लवणता हो सकती है। इन पारिस्थितिक तंत्रों में मैग्नीशियम संतृप्ति, जिसे बिटर्न (नमक) के रूप में भी जाना जाता है, अक्सर बहुत कम या कोई जीवन मौजूद नहीं होता है।[15] यह वातावरण बहुत शत्रुतापूर्ण है और एच. वाल्स्बी अपने अद्वितीय जीनोमिक बनावट के कारण ही इसमें जीवित रह पाता है और जबकि अन्य जीव समान परिस्थितियों में नष्ट हो जाते हैं।[1]


संदर्भ

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 {{cite journal | vauthors = Bolhuis H, Palm P, Wende A, Falb M, Rampp M, Rodriguez-Valera F, Pfeiffer F, Oesterhelt D | display-authors = 6 | title = स्क्वायर आर्कियोन हेलोक्वाड्रैटम वाल्स्बी का जीनोम: जल गतिविधि की सीमा पर जीवन| journal = BMC Genomics | volume = 7 | pages = 169 | date = July 2006 | pmid = 16820047 | pmc = 1544339 | doi = 10.1186/1471-2164-7-169 }
  2. 2.0 2.1 Oren A, Ventosa A, Gutiérrez MC, Kamekura M (July 1999). "हेलोआर्कुला क्वाड्रेटा सपा। नव., सिनाई (मिस्र) में एक नमकीन पूल से अलग किया गया एक वर्गाकार, गतिशील पुरातत्व". International Journal of Systematic Bacteriology. 49 (3): 1149–1155. doi:10.1099/00207713-49-3-1149. PMID 10425773. स्क्वायर बैक्टीरिया पहली बार 1980 में वाल्स्बी द्वारा गाविश सब्खा, सिनाई प्रायद्वीप, मिस्र में एक तटीय ब्राइन पूल (पार्केस एंड वाल्स्बी, 1981; वाल्स्बी, 1980) में देखे गए थे। वाल्स्बी ने इन बेहद पतली, चौकोर आकार की संरचनाओं को प्रोकैरियोट्स के रूप में पहचाना ...
  3. 3.0 3.1 3.2 {{Cite web | vauthors = Oesterhelt D | date = 2022 |title=Haloquadratum walsbyi - सिंहावलोकन|url=https://www.biochem.mpg.de/6522282/Org_Hqwal |access-date=2022-11-16 | work = Max Planck Institute of Biochemistry | publisher = Max-Planck-Gesellschaft |language=en}
  4. 4.0 4.1 4.2 4.3 Sublimi Saponetti M, Bobba F, Salerno G, Scarfato A, Corcelli A, Cucolo A (April 2011). "अत्यंत हेलोफिलिक पुरातत्व हेलोक्वाड्रैटम वाल्स्बी के रूपात्मक और संरचनात्मक पहलू". PLOS ONE. 6 (4): e18653. Bibcode:2011PLoSO...618653S. doi:10.1371/journal.pone.0018653. PMC 3084702. PMID 21559517.
  5. Burns DG, Janssen PH, Itoh T, Kamekura M, Li Z, Jensen G, et al. (February 2007). "हेलोक्वाड्रैटम वाल्स्बी जीन। नव., सपा. नव., ऑस्ट्रेलिया और स्पेन में साल्टर्न क्रिस्टलाइज़र से पृथक, वाल्स्बी का वर्ग हेलोआर्कियॉन". International Journal of Systematic and Evolutionary Microbiology. 57 (Pt 2): 387–392. doi:10.1099/ijs.0.64690-0. PMID 17267984.
  6. 6.0 6.1 {{cite journal | vauthors = Martin-Cuadrado AB, Pašić L, Rodriguez-Valera F | title = पुरातत्व हेलोक्वाड्राटम वाल्स्बी के कोशिका-दीवार से जुड़े जीनोमिक द्वीप की विविधता| journal = BMC Genomics | volume = 16 | issue = 1 | pages = 603 | date = August 2015 | pmid = 26268990 | pmc = 4535781 | doi = 10.1186/s12864-015-1794-8 }
  7. Oh D, Porter K, Russ B, Burns D, Dyall-Smith M (March 2010). "हेलोक्वाड्रैटम और तीन में अन्य हेलोआर्किया की विविधता, भौगोलिक रूप से दूर, ऑस्ट्रेलियाई साल्टर्न क्रिस्टलाइज़र तालाब". Extremophiles. 14 (2): 161–169. doi:10.1007/s00792-009-0295-6. PMC 2832888. PMID 20091074.
  8. Zenke R, von Gronau S, Bolhuis H, Gruska M, Pfeiffer F, Oesterhelt D (2015). "हैलोम्यूसीन का फ्लोरेसेंस माइक्रोस्कोपी विज़ुअलाइज़ेशन, हेलोक्वाड्रैटम वाल्स्बी कोशिकाओं के आसपास एक स्रावित 927 केडीए प्रोटीन". Frontiers in Microbiology. 6: 249. doi:10.3389/fmicb.2015.00249. PMC 4378361. PMID 25870593.
  9. 9.0 9.1 9.2 9.3 {{cite journal | vauthors = Sublimi Saponetti M, Bobba F, Salerno G, Scarfato A, Corcelli A, Cucolo A | title = अत्यंत हेलोफिलिक पुरातत्व हेलोक्वाड्रैटम वाल्स्बी के रूपात्मक और संरचनात्मक पहलू| journal = PLOS ONE | volume = 6 | issue = 4 | pages = e18653 | date = April 2011 | pmid = 21559517 | pmc = 3084702 | doi = 10.1371/journal.pone.0018653 | bibcode = 2011PLoSO...618653S | doi-access = free }
  10. 10.0 10.1 10.2 {{cite journal | vauthors = Bolhuis H, Martín-Cuadrado AB, Rosselli R, Pašić L, Rodriguez-Valera F | title = Haloquadratum walsbyi का ट्रांसक्रिप्टोम विश्लेषण: वैनिटी इज बट द सरफेस| journal = BMC Genomics | volume = 18 | issue = 1 | pages = 510 | date = July 2017 | pmid = 28673248 | pmc = 5496347 | doi = 10.1186/s12864-017-3892-2 }
  11. 11.0 11.1 {{cite journal | vauthors = Bolhuis H, Poele EM, Rodriguez-Valera F | title = वाल्स्बी स्क्वायर आर्कियोन का अलगाव और खेती| journal = Environmental Microbiology | volume = 6 | issue = 12 | pages = 1287–1291 | date = December 2004 | pmid = 15560825 | doi = 10.1111/j.1462-2920.2004.00692.x }
  12. Podell S, Ugalde JA, Narasingarao P, Banfield JF, Heidelberg KB, Allen EE (2013-04-18). "हाइपरसैलिन माइक्रोबियल इकोसिस्टम का असेंबली-संचालित सामुदायिक जीनोमिक्स". PLOS ONE. 8 (4): e61692. Bibcode:2013PLoSO...861692P. doi:10.1371/journal.pone.0061692. PMC 3630111. PMID 23637883.
  13. Ghai R, Pašić L, Fernández AB, Martin-Cuadrado AB, Mizuno CM, McMahon KD, et al. (2011-10-31). "जलीय हाइपरसैलिन वातावरण में नए प्रचुर मात्रा में माइक्रोबियल समूह". Scientific Reports. 1: 135. Bibcode:2011NatSR...1E.135G. doi:10.1038/srep00135. PMC 3216616. PMID 22355652.
  14. 14.0 14.1 {{cite journal | vauthors = Oren A | title = लाल ब्राइन की सूक्ष्म जीव विज्ञान| journal = Advances in Applied Microbiology | volume = 113 | issue = | pages = 57–110 | date = 2020 | pmid = 32948267 | doi = 10.1016/bs.aambs.2020.07.003 | isbn = 978-0-12-820709-3 | s2cid = 221797864 }
  15. Oren A (January 2002). "Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications". Journal of Industrial Microbiology & Biotechnology. 28 (1): 56–63. doi:10.1038/sj/jim/7000176. PMID 11938472. S2CID 24223243.


अग्रिम पठन


बाहरी संबंध

Lua error in package.lua at line 80: module 'Module:Taxonbar/conf' not found.