कारण मॉडल

From Vigyanwiki
Revision as of 10:00, 4 August 2023 by alpha>Shyamunayak
एफएमआरआई छवियों की व्याख्या के लिए उपयोग किए जाने वाले दो प्रतिस्पर्धी करणीय प्रारूप (डीसीएम, जीसीएम) की तुलना[1]

विज्ञान के दर्शन में, कारणीय प्रारूप या संरचनात्मक कारणीय प्रारूप एक अवधारणात्मक प्रारूप है जो किसी प्रणाली के कारणीय यंत्र का वर्णन करता है। कारणीय प्रारूप स्वतंत्र चर भविष्यवाणी करने के लिए स्पष्ट निर्धारण नियम प्रदान करके अध्ययन योजनाओं को सुधार कर सकता हैं। यह निर्धारण नियम तय करते हैं कि कौन से स्वतंत्र मानकों को सम्मिलित और नियंत्रित करने की आवश्यकता है।

वे यादृच्छिक नियंत्रित परीक्षण जैसे पारंपरिक अध्ययन की आवश्यकता के बिना उपस्थित अवलोकन संबंधी डेटा से कुछ प्रश्नों के उत्तर देने की अनुमति दे सकते हैं। कुछ पारंपरिक अध्ययन नैतिक या व्यावहारिक करणीयों से अनुपयुक्त हैं, जिसका अर्थ है कि करणीय प्रारूप के बिना, कुछ परिकल्पनाओं का परीक्षण नहीं किया जा सकता है।

करणीय प्रारूप बाह्य वैधता के प्रश्न में मदद कर सकते हैं करणीय प्रारूप कई अध्ययनों से डेटा को विलय करने की अनुमति दे सकते हैं उन प्रश्नों का उत्तर देने के लिए जिनका उत्तर किसी भी व्यक्तिगत डेटा सेट द्वारा नहीं दिया जा सकता है।

करणीय प्रारूप का उपयोग विज्ञापन प्रसंस्करण, महामारी विज्ञान और लर्निंग में मिला है।[2]

परिभाषा

कारणीय मॉडलें गणितीय मॉडल होते हैं जो एक व्यक्तिगत प्रणाली या जनसंख्या के भीतर कारणीय संबंधों को प्रदर्शित करते हैं। इन्हें सांख्यिकीय डेटा से कारणीय संबंधों के बारे में निष्कर्ष निकालने में मदद करते हैं। ये हमें कारण के ज्ञान के बारे में काफी कुछ सिखा सकते हैं, और कारणीयता और प्रायभाविकता के बीच संबंध के बारे में भी। इन्हें तर्क के विषयों के लिए भी लागू किया गया है, जैसे पराकृतिय लक्षणों की तार्किकता, निर्णय सिद्धांत, और वास्तविक कारण के विश्लेषण के बारे में।.[3]

— स्टैनफोर्ड इनसाइक्लोपीडिया ऑफ फिलॉसफी

जुडिया पर्ल एक करणीय प्रारूप को एक आदेशित ट्रिपल के रूप में परिभाषित करता है , जहां यू बहिर्जात चर का एक सेट है जिसका मान प्रारूप के बाहर के कारकों द्वारा निर्धारित किया जाता है; वी अंतर्जात चर का एक सेट है जिसका मान प्रारूप के भीतर कारकों द्वारा निर्धारित किया जाता है; और ई संरचनात्मक समीकरणों का एक सेट है जो यू और वी में अन्य चर के मूल्यों के एक फ़ंक्शन के रूप में प्रत्येक अंतर्जात चर के मूल्य को व्यक्त करता है।[2]

इतिहास

अरस्तू ने भौतिक, औपचारिक, कुशल और अंतिम करणीयों सहित कार्य-करणीय की वर्गीकरण को परिभाषित किया। ह्यूम ने प्रतितथ्यात्मक सशर्त के पक्ष में अरस्तू की वर्गीकरण को खारिज कर दिया। एक बिंदु पर, उन्होंने इस बात से इनकार किया कि वस्तुओं में ऐसी शक्तियाँ होती हैं जो एक को करणीय और दूसरे को प्रभाव बनाती हैं। बाद में उन्होंने अपनाया कि यदि पहली वस्तु नहीं थी, तो दूसरी कभी अस्तित्व में नहीं थी (अनिवार्यतः|लेकिन-कार्यकरणीय के लिए)।[4]

19वीं सदी के अंत में सांख्यिकी का अनुशासन बनना शुरू हुआ। जैविक वंशानुक्रम जैसे डोमेन के लिए करणीय नियमों की पहचान करने के वर्षों के लंबे प्रयास के बाद, फ्रांसिस गैल्टन ने माध्य की ओर प्रतिगमन की अवधारणा पेश की (खेल में द्वितीय वर्ष की गिरावट का प्रतीक) जो बाद में उन्हें सहसंबंध की गैर-करणीय अवधारणा की ओर ले गई।[4] प्रत्यक्षवाद के रूप में, कार्ल पियर्सन ने साहचर्य के एक अप्रमाणित विशेष मामले के रूप में विज्ञान के अधिकांश भाग से कार्य-करणीय की धारणा को समाप्त कर दिया और साहचर्य गुणांक को साहचर्य के मीट्रिक के रूप में पेश किया। उन्होंने लिखा, गति के करणीय के रूप में बल ठीक उसी तरह है जैसे विकास के करणीय के रूप में वृक्ष देवता और वह करणीय आधुनिक विज्ञान के गूढ़ रहस्यों के बीच केवल एक आकर्षण था। पियर्सन ने यूनिवर्सिटी कॉलेज लंदन में बॉयोमेट्रिक्स और बायोमेट्रिक्स लैब की स्थापना की, जो सांख्यिकी के क्षेत्र में विश्व में अग्रणी बन गई।[4]

1908 में जी. एच. हार्डी और विल्हेम वेनबर्ग ने मेंडेलियन वंशानुक्रम को पुनर्जीवित करके, हार्डी-वेनबर्ग सिद्धांत की समस्या को हल किया, जिसके करणीय गैल्टन ने कार्य-करणीय को त्याग दिया था।[4]

1921 में सीवल राइट का पथ विश्लेषण (सांख्यिकी) करणीय प्रारूपिंग और करणीय ग्राफ़ का सैद्धांतिक पूर्वज बन गया।[5] उन्होंने बलि का बकरा कोट पैटर्न पर आनुवंशिकता, विकास और पर्यावरण के सापेक्ष प्रभावों को सुलझाने का प्रयास करते हुए इस दृष्टिकोण को विकसित किया। उन्होंने अपने तत्कालीन विधर्मी दावों का समर्थन करते हुए दिखाया कि कैसे ऐसे विश्लेषण गिनी पिग के जन्म के वजन, गर्भाशय के समय और कूड़े के आकार के बीच संबंध को समझा सकते हैं। प्रमुख सांख्यिकीविदों द्वारा इन विचारों के विरोध के करणीय उन्हें अगले 40 वर्षों तक (पशु प्रजनकों को छोड़कर) नजरअंदाज किया गया। इसके बजाय वैज्ञानिकों ने सहसंबंधों पर भरोसा किया, आंशिक रूप से राइट के आलोचक (और प्रमुख सांख्यिकीविद्), रोनाल्ड फिशर के आदेश पर।[4]एक अपवाद बारबरा स्टोडर्ड बर्क्स था, जो 1926 में एक छात्र था जिसने मध्यस्थ प्रभाव (मध्यस्थ) का प्रतिनिधित्व करने के लिए पथ आरेख लागू करने वाले पहले व्यक्ति थे और यह दावा किया था कि मध्यस्थ को स्थिर रखने से त्रुटियां उत्पन्न होती हैं। हो सकता है कि उसने स्वतंत्र रूप से पथ आरेखों का आविष्कार किया हो।[4]: 304

1923 में, जॉर्ज नेमन ने संभावित परिणाम की अवधारणा पेश की, लेकिन 1990 तक उनके पेपर का पोलिश से अंग्रेजी में अनुवाद नहीं किया गया था।[4]: 271

1958 में डेविड कॉक्स (सांख्यिकीविद्) ने चेतावनी दी थी कि एक चर Z के लिए नियंत्रण केवल तभी मान्य है जब यह स्वतंत्र चर से प्रभावित होने की अत्यधिक संभावना नहीं है।[4]: 154

1960 के दशक में, ओटिस डडली डंकन, ह्यूबर्ट एम. ब्लालॉक जूनियर, आर्थर गोल्डबर्गर और अन्य ने पथ विश्लेषण को फिर से खोजा। पथ आरेखों पर ब्लालॉक के काम को पढ़ते समय, डंकन को बीस साल पहले विलियम फील्डिंग ओगबर्न का एक व्याख्यान याद आया जिसमें राइट के एक पेपर का उल्लेख किया गया था जिसमें बदले में बर्क्स का उल्लेख किया गया था।[4]: 308

समाजशास्त्रियों ने मूल रूप से करणीय प्रारूप को संरचनात्मक समीकरण प्रारूपिंग कहा था, लेकिन एक बार जब यह एक रटी हुई विधि बन गई, तो इसने अपनी उपयोगिता खो दी, जिसके करणीय कुछ चिकित्सकों ने कार्य-करणीय के साथ किसी भी संबंध को अस्वीकार कर दिया। अर्थशास्त्रियों ने पथ विश्लेषण के बीजगणितीय भाग को अपनाया, इसे एक साथ समीकरण प्रारूपिंग कहा। हालाँकि, अर्थशास्त्री अभी भी अपने समीकरणों को करणीयात्मक अर्थ देने से बचते रहे।[4]

अपने पहले पेपर के साठ साल बाद, सैमुअल कार्लिन और अन्य की आलोचना के बाद, राइट ने एक टुकड़ा प्रकाशित किया, जिसमें इसे दोहराया गया था, जिसमें आपत्ति जताई गई थी कि यह केवल रैखिक संबंधों को संभालता है और डेटा की मजबूत, प्रारूप-मुक्त प्रस्तुतियाँ अधिक खुलासा करने वाली थीं।[4]

1973 में डेविड लुईस (दार्शनिक) ने सहसंबंध को परंतु-करणीय-करणीय (प्रतितथ्यात्मक) से बदलने की वकालत की। उन्होंने मनुष्यों की वैकल्पिक दुनिया की कल्पना करने की क्षमता का उल्लेख किया जिसमें कोई करणीय घटित हुआ या नहीं हुआ, और जिसमें कोई प्रभाव उसके करणीय के बाद ही प्रकट हुआ।[4]: 266 1974 में डोनाल्ड रुबिन ने करणीयात्मक प्रश्न पूछने की भाषा के रूप में संभावित परिणामों की धारणा पेश की।[4]: 269

1983 में नैन्सी कार्टराईट (दार्शनिक) ने प्रस्तावित किया कि कोई भी कारक जो किसी प्रभाव के लिए प्रासंगिक रूप से प्रासंगिक है, उसे एकमात्र मार्गदर्शक के रूप में सरल संभाव्यता से आगे बढ़ते हुए वातानुकूलित किया जाना चाहिए।[4]: 48

1986 में बैरन और केनी ने रैखिक समीकरणों की एक प्रणाली में मध्यस्थता का पता लगाने और उसका मूल्यांकन करने के लिए सिद्धांत पेश किए। 2014 तक उनका पेपर अब तक का 33वां सबसे अधिक उद्धृत किया गया पेपर था।[4]: 324 उस वर्ष सैंडर ग्रीनलैंड और जेम्स रॉबिन्स ने प्रतितथ्यात्मक पर विचार करके उलझन से निपटने के लिए विनिमयशीलता दृष्टिकोण की शुरुआत की। उन्होंने यह आकलन करने का प्रस्ताव रखा कि यदि उपचार समूह को उपचार नहीं मिला होता तो उनका क्या होता और उस परिणाम की तुलना नियंत्रण समूह से की जाती। यदि वे मेल खाते थे, तो कन्फ़ाउंडिंग को अनुपस्थित कहा जाता था।[4]: 154

कार्य-करणीय की सीढ़ी

पर्ल के करणीय मेटाप्रारूपिंग में तीन-स्तरीय अमूर्तता शामिल है जिसे वह कार्य-करणीय की सीढ़ी कहते हैं। निम्नतम स्तर, एसोसिएशन (देखना/अवलोकन करना), सहसंबंध के रूप में व्यक्त इनपुट डेटा में नियमितता या पैटर्न की अनुभूति पर जोर देता है। मध्य स्तर, हस्तक्षेप (करना), जानबूझकर किए गए कार्यों के प्रभावों की भविष्यवाणी करता है, जिसे करणीय संबंधों के रूप में व्यक्त किया जाता है। उच्चतम स्तर, प्रतितथ्यात्मक सशर्त (कल्पना) में दुनिया के (भाग के) सिद्धांत का निर्माण शामिल है जो बताता है कि विशिष्ट कार्यों का विशिष्ट प्रभाव क्यों होता है और ऐसे कार्यों की अनुपस्थिति में क्या होता है।[4]


एसोसिएशन

एक वस्तु दूसरे से जुड़ी होती है यदि एक का अवलोकन करने से दूसरे के अवलोकन की संभावना बदल जाती है। उदाहरण: जो खरीदार टूथपेस्ट खरीदते हैं, उनके डेंटल फ्लॉस भी खरीदने की अधिक संभावना होती है। गणितीय रूप से:

या टूथपेस्ट दिए जाने पर फ्लॉस (खरीदने) की (खरीदने) की संभावना। संघों को दो घटनाओं के सहसंबंध और निर्भरता की गणना के माध्यम से भी मापा जा सकता है। संघों का कोई करणीयात्मक निहितार्थ नहीं है। एक घटना दूसरे का करणीय बन सकती है, उलटा सच हो सकता है, या दोनों घटनाएं किसी तीसरी घटना के करणीय हो सकती हैं (नाखुश स्वच्छता विशेषज्ञ दुकानदार को अपने मुंह का बेहतर इलाज करने से शर्मिंदा करते हैं)।[4]


हस्तक्षेप

यह स्तर घटनाओं के बीच विशिष्ट करणीय संबंधों पर जोर देता है। किसी घटना को प्रभावित करने वाली किसी क्रिया को प्रयोगात्मक रूप से निष्पादित करके कार्य-करणीय का मूल्यांकन किया जाता है। उदाहरण: टूथपेस्ट की कीमत दोगुनी होने के बाद, खरीदारी की नई संभावना क्या होगी? (मूल्य परिवर्तन के) इतिहास की जांच करके करणीयता स्थापित नहीं की जा सकती क्योंकि मूल्य परिवर्तन किसी अन्य करणीय से हो सकता है जो स्वयं दूसरी घटना (एक टैरिफ जो दोनों वस्तुओं की कीमत बढ़ाता है) को प्रभावित कर सकता है। गणितीय रूप से:

एक ऑपरेटर कहां है जो प्रयोगात्मक हस्तक्षेप (कीमत को दोगुना करने) का संकेत देता है।[4]ऑपरेटर वांछित प्रभाव पैदा करने के लिए आवश्यक दुनिया में न्यूनतम परिवर्तन करने का संकेत देता है, प्रारूप पर एक मिनी-सर्जरी जिसमें वास्तविकता से जितना संभव हो उतना कम बदलाव होता है।[6]


प्रतितथ्यात्मक

उच्चतम स्तर, प्रतितथ्यात्मक, में पिछली घटना के वैकल्पिक संस्करण पर विचार करना शामिल है, या एक ही प्रयोगात्मक इकाई के लिए विभिन्न परिस्थितियों में क्या होगा। उदाहरण के लिए, क्या संभावना है कि, यदि किसी स्टोर ने फ्लॉस की कीमत दोगुनी कर दी होती, तो भी टूथपेस्ट खरीदने वाला खरीदार इसे खरीद लेता?

प्रतितथ्यात्मक बातें किसी करणीय-करणीय संबंध के अस्तित्व का संकेत दे सकती हैं। ऐसे प्रारूप जो प्रतितथ्यात्मक उत्तर दे सकते हैं, सटीक हस्तक्षेप की अनुमति देते हैं जिनके परिणामों की भविष्यवाणी की जा सकती है। चरम सीमा पर, ऐसे प्रारूपों को भौतिक नियमों के रूप में स्वीकार किया जाता है (जैसे कि भौतिकी के नियम, उदाहरण के लिए, जड़ता, जो कहता है कि यदि किसी स्थिर वस्तु पर बल नहीं लगाया जाता है, तो वह गति नहीं करेगी)।[4]


करणीय-करणीय

कार्य-करणीय बनाम सहसंबंध

सांख्यिकी कई चरों के बीच संबंधों के विश्लेषण के इर्द-गिर्द घूमती है। परंपरागत रूप से, इन रिश्तों को सहसंबंध और निर्भरता के रूप में वर्णित किया जाता है, बिना किसी निहित करणीय संबंधों के संबंध। करणीय प्रारूप करणीय संबंधों की धारणा को जोड़कर इस ढांचे का विस्तार करने का प्रयास करते हैं, जिसमें एक चर में परिवर्तन दूसरों में परिवर्तन का करणीय बनता है।[2]

बीसवीं शताब्दी में कार्य-करणीय की परिभाषाएँ पूर्णतया संभावनाओं/सहयोगों पर निर्भर थीं। एक घटना () के बारे में कहा जाता था कि यह दूसरे का करणीय बनता है यदि इससे दूसरे की संभावना बढ़ जाती है (). गणितीय रूप से इसे इस प्रकार व्यक्त किया जाता है:

.

ऐसी परिभाषाएँ अपर्याप्त हैं क्योंकि अन्य रिश्ते (उदाहरण के लिए, एक सामान्य करणीय) और ) शर्त को पूरा कर सकता है। करणीयता दूसरी सीढ़ी के चरण के लिए प्रासंगिक है। एसोसिएशन पहले कदम पर हैं और बाद वाले को केवल साक्ष्य प्रदान करते हैं।[4]

बाद की परिभाषा में पृष्ठभूमि कारकों पर कंडीशनिंग द्वारा इस अस्पष्टता को संबोधित करने का प्रयास किया गया। गणितीय रूप से:

,

कहाँ पृष्ठभूमि चर का सेट है और एक विशिष्ट संदर्भ में उन चरों के मूल्यों का प्रतिनिधित्व करता है। हालाँकि, पृष्ठभूमि चर का आवश्यक सेट अनिश्चित है (कई सेट संभावना बढ़ा सकते हैं), जब तक संभावना ही एकमात्र मानदंड है[clarification needed].[4]

कार्य-करणीय को परिभाषित करने के अन्य प्रयासों में ग्रेंजर कार्य-करणीय शामिल है, एक सांख्यिकीय परिकल्पना परीक्षण जो कार्य-करणीय (अर्थशास्त्र में) का आकलन किसी अन्य समय श्रृंखला के पूर्व मूल्यों का उपयोग करके एक समय श्रृंखला के भविष्य के मूल्यों की भविष्यवाणी करने की क्षमता को मापकर किया जा सकता है।[4]


प्रकार

एक करणीय करणीयता#आवश्यक और पर्याप्त करणीय|आवश्यक, पर्याप्त, अंशदायी या कुछ संयोजन हो सकता है।[7]


आवश्यक

x को y का एक आवश्यक करणीय होने के लिए, y की उपस्थिति को x की पूर्व घटना का संकेत देना चाहिए। हालाँकि, x की उपस्थिति का अर्थ यह नहीं है कि y घटित होगा।[8] आवश्यक करणीयों को परंतु-के लिए करणीयों के रूप में भी जाना जाता है, जैसे कि x के घटित होने के बिना y घटित नहीं होता।[4]: 261

पर्याप्त करणीय

x को y का पर्याप्त करणीय होने के लिए, x की उपस्थिति को y की बाद की घटना का संकेत देना चाहिए। हालाँकि, एक अन्य करणीय z स्वतंत्र रूप से y का करणीय बन सकता है। इस प्रकार y की उपस्थिति के लिए x की पूर्व घटना की आवश्यकता नहीं है।[8]


अंशदायी करणीय

x के लिए y का अंशदायी करणीय होने के लिए, x की उपस्थिति से y की संभावना बढ़नी चाहिए। यदि संभावना 100% है, तो इसके बजाय x को पर्याप्त कहा जाता है। एक अंशदायी करणीय भी आवश्यक हो सकता है.[9]


प्रारूप

करणीय आरेख

करणीय आरेख एक निर्देशित ग्राफ़ है जो करणीय प्रारूप में चर (गणित) के बीच कार्य-करणीय संबंध प्रदर्शित करता है। एक करणीय आरेख में चर (या नोड (ग्राफ़ सिद्धांत)) का एक सेट शामिल होता है। प्रत्येक नोड एक तीर द्वारा एक या अधिक अन्य नोड्स से जुड़ा होता है जिस पर इसका करणीयात्मक प्रभाव होता है। एक तीर का सिरा कार्य-करणीय की दिशा को चित्रित करता है, उदाहरण के लिए, चर को जोड़ने वाला एक तीर और पर तीर के सिरे के साथ में परिवर्तन का संकेत देता है में परिवर्तन का करणीय बनता है (संबद्ध संभावना के साथ)। पथ करणीय तीरों के बाद दो नोड्स के बीच ग्राफ़ का एक ट्रैवर्सल है।[4]

करणीय आरेखों में करणीय लूप आरेख, निर्देशित चक्रीय ग्राफ़ और इशिकावा आरेख शामिल हैं।[4]

करणीय आरेख उन मात्रात्मक संभावनाओं से स्वतंत्र होते हैं जो उन्हें सूचित करते हैं। उन संभावनाओं में बदलाव (उदाहरण के लिए, तकनीकी सुधार के करणीय) के लिए प्रारूप में बदलाव की आवश्यकता नहीं है।[4]


प्रारूप तत्व

करणीय प्रारूप में विशिष्ट गुणों वाले तत्वों के साथ औपचारिक संरचनाएं होती हैं।[4]


जंक्शन पैटर्न

तीन नोड्स के तीन प्रकार के कनेक्शन रैखिक श्रृंखला, शाखा कांटे और विलय कोलाइडर हैं।[4]


श्रृंखला

शृंखलाएँ करणीय से प्रभाव की ओर इंगित करने वाले तीरों के साथ सीधी रेखा वाले कनेक्शन हैं। इस प्रारूप में, इसमें एक मध्यस्थ है जो परिवर्तन में मध्यस्थता करता है अन्यथा चालू होता .[4]: 113


कांटा

फोर्क्स में, एक करणीय के कई प्रभाव होते हैं। दोनों प्रभावों का एक सामान्य करणीय है। के बीच एक (गैर-करणीयात्मक) नकली सहसंबंध मौजूद है और जिसे कंडीशनिंग द्वारा समाप्त किया जा सकता है (के एक विशिष्ट मूल्य के लिए ).[4]: 114

कंडीशनिंग चालू मतलब दिया गया (अर्थात्, का मान दिया गया है ).

एक कांटा का विस्तार कन्फ़ाउंडर है:

ऐसे प्रारूपों में, का एक सामान्य करणीय है और (जिसका करणीय भी है ), बनाना भ्रमित करने वाला[clarification needed].[4]: 114

कोलाइडर

कोलाइडर (सांख्यिकी) में, कई करणीय एक परिणाम को प्रभावित करते हैं। कंडीशनिंग चालू (के एक विशिष्ट मूल्य के लिए ) के बीच अक्सर एक गैर-करणीयात्मक नकारात्मक सहसंबंध का पता चलता है और . इस नकारात्मक सहसंबंध को कोलाइडर बायस और एक्सप्लेन-अवे प्रभाव कहा गया है के बीच संबंध को दूर करता है और .[4]: 115 सहसंबंध उस स्थिति में सकारात्मक हो सकता है जहां दोनों का योगदान हो और प्रभावित करना आवश्यक है .[4]: 197


नोड प्रकार

मध्यस्थ

एक मध्यस्थ नोड किसी परिणाम पर अन्य करणीयों के प्रभाव को संशोधित करता है (केवल परिणाम को प्रभावित करने के विपरीत)।[4]: 113 उदाहरण के लिए, उपरोक्त श्रृंखला उदाहरण में, एक मध्यस्थ है, क्योंकि यह के प्रभाव को संशोधित करता है (अप्रत्यक्ष करणीय) ) पर (ये परिणाम)।

कन्फ़ाउंडर

एक कन्फ़ाउंडर नोड कई परिणामों को प्रभावित करता है, जिससे उनके बीच एक सकारात्मक सहसंबंध बनता है।[4]: 114

वाद्य चर

एक वाद्य चर अनुमान वह है जो:[4]: 246

  • परिणाम का एक मार्ग है;
  • करणीय चर के लिए कोई अन्य रास्ता नहीं है;
  • परिणाम पर कोई सीधा प्रभाव नहीं पड़ता.

प्रतिगमन गुणांक किसी परिणाम पर एक वाद्य चर के करणीय प्रभाव के अनुमान के रूप में काम कर सकते हैं जब तक कि वह प्रभाव भ्रमित न हो। इस तरह, वाद्य चर, कन्फ़्यूडर पर डेटा के बिना करणीय कारकों को निर्धारित करने की अनुमति देते हैं।[4]: 249

उदाहरण के लिए, प्रारूप दिया गया:

यह एक वाद्य चर है, क्योंकि इसमें परिणाम का एक मार्ग है और निराधार है, उदाहरण के लिए, द्वारा .

उपरोक्त उदाहरण में, यदि और बाइनरी मान लें, फिर यह धारणा नहीं होता है उसे एकरसता कहते हैं[clarification needed].[4]: 253

तकनीक में सुधार[clarification needed] एक उपकरण बनाना शामिल है[clarification needed] अन्य चर पर कंडीशनिंग द्वारा[clarification needed] ब्लौक करने के लिए[clarification needed] रास्ते[clarification needed] उपकरण और कन्फ़ाउंडर के बीच[clarification needed] और एक एकल उपकरण बनाने के लिए कई चर को संयोजित करना[clarification needed].[4]: 257

मेंडेलियन यादृच्छिकीकरण

परिभाषा: मेंडेलियन रैंडमाइजेशन अवलोकन संबंधी अध्ययनों में बीमारी पर एक परिवर्तनीय जोखिम के करणीय प्रभाव की जांच करने के लिए ज्ञात फ़ंक्शन के जीन में मापी गई भिन्नता का उपयोग करता है।[10][11] क्योंकि आबादी में जीन बेतरतीब ढंग से भिन्न होते हैं, जीन की उपस्थिति आम तौर पर एक वाद्य चर के रूप में योग्य होती है, जिसका अर्थ है कि कई मामलों में, एक अवलोकन अध्ययन पर प्रतिगमन का उपयोग करके कार्य-करणीय की मात्रा निर्धारित की जा सकती है।[4]: 255

एसोसिएशन

स्वतंत्रता की शर्तें

स्वतंत्रता की स्थितियाँ यह तय करने के लिए नियम हैं कि क्या दो चर एक दूसरे से स्वतंत्र हैं। चर स्वतंत्र होते हैं यदि एक का मान सीधे दूसरे के मान को प्रभावित नहीं करता है। एकाधिक करणीय प्रारूप स्वतंत्रता की स्थिति साझा कर सकते हैं। उदाहरण के लिए, प्रारूप

और

समान स्वतंत्रता की स्थितियाँ हैं, क्योंकि कंडीशनिंग चालू है पत्तियाँ और स्वतंत्र। हालाँकि, दोनों प्रारूपों का अर्थ समान नहीं है और इन्हें डेटा के आधार पर गलत ठहराया जा सकता है (अर्थात्, यदि अवलोकन डेटा इनके बीच संबंध दिखाता है) और कंडीशनिंग के बाद , तो दोनों प्रारूप गलत हैं)। इसके विपरीत, डेटा यह नहीं दिखा सकता कि इन दोनों प्रारूपों में से कौन सा सही है, क्योंकि उनकी स्वतंत्रता की शर्तें समान हैं।

एक चर पर कंडीशनिंग काल्पनिक प्रयोगों के संचालन के लिए एक तंत्र है। एक चर पर कंडीशनिंग में वातानुकूलित चर के दिए गए मान के लिए अन्य चर के मूल्यों का विश्लेषण करना शामिल है। पहले उदाहरण में, कंडीशनिंग चालू है तात्पर्य यह है कि किसी दिए गए मान के लिए अवलोकन के बीच कोई निर्भरता नहीं दिखानी चाहिए और . यदि ऐसी कोई निर्भरता मौजूद है, तो प्रारूप गलत है। गैर-करणीय प्रारूप ऐसे भेद नहीं कर सकते, क्योंकि वे करणीय संबंधी दावे नहीं करते हैं।[4]: 129–130

कन्फ़ाउंडर/डीकॉनफ़ाउंडर

सहसंबंधी अध्ययन डिजाइन का एक अनिवार्य तत्व अध्ययन के तहत जनसांख्यिकी जैसे चर पर संभावित रूप से भ्रमित करने वाले प्रभावों की पहचान करना है। उन प्रभावों को ख़त्म करने के लिए इन चरों को नियंत्रित किया जाता है। हालाँकि, भ्रमित करने वाले चरों की सही सूची को प्राथमिकता से निर्धारित नहीं किया जा सकता है। इस प्रकार यह संभव है कि एक अध्ययन अप्रासंगिक चर या यहां तक ​​कि (अप्रत्यक्ष रूप से) अध्ययन के तहत चर को नियंत्रित कर सकता है।[4]: 139

कॉज़ल प्रारूप उपयुक्त भ्रमित करने वाले चर की पहचान करने के लिए एक मजबूत तकनीक प्रदान करते हैं। औपचारिक रूप से, Z एक कन्फ़ाउंडर है यदि Y, X से न गुजरने वाले पथों के माध्यम से Z के साथ जुड़ा हुआ है। इन्हें अक्सर अन्य अध्ययनों के लिए एकत्र किए गए डेटा का उपयोग करके निर्धारित किया जा सकता है। गणितीय रूप से, यदि

एक्स और वाई भ्रमित हैं (कुछ कन्फ्यूडर वेरिएबल जेड द्वारा)।[4]: 151

इससे पहले, कथित तौर पर कन्फ़ाउंडर की गलत परिभाषाओं में शामिल हैं:[4]: 152

  • कोई भी वेरिएबल जो X और Y दोनों से सहसंबद्ध है।
  • अनएक्सपोज़्ड के बीच Y, Z के साथ जुड़ा हुआ है।
  • नॉनकोलैप्सिबिलिटी: कच्चे तेल के सापेक्ष जोखिम और संभावित कन्फ्यूडर के समायोजन के बाद उत्पन्न होने वाले सापेक्ष जोखिम के बीच अंतर।
  • महामारी विज्ञान: बड़े पैमाने पर आबादी में एक्स के साथ जुड़ा एक चर और एक्स के संपर्क में नहीं आने वाले लोगों में वाई के साथ जुड़ा हुआ है।

प्रारूप में यह देखते हुए उत्तरार्द्ध त्रुटिपूर्ण है:

Z परिभाषा से मेल खाता है, लेकिन मध्यस्थ है, संस्थापक नहीं, और परिणाम को नियंत्रित करने का एक उदाहरण है।

प्रारूप में

परंपरागत रूप से, बी को एक कन्फ्यूडर माना जाता था, क्योंकि यह एक्स और वाई के साथ जुड़ा हुआ है, लेकिन यह करणीय पथ पर नहीं है और न ही यह करणीय पथ पर किसी भी चीज़ का वंशज है। बी के लिए नियंत्रण करने से यह कन्फ्यूडर बन जाता है। इसे एम-पूर्वाग्रह के रूप में जाना जाता है।[4]: 161

पिछले दरवाजे से समायोजन

एक करणीय प्रारूप में Y पर X के करणीय प्रभाव का विश्लेषण करने के लिए सभी कन्फ़ाउंडर चर को संबोधित किया जाना चाहिए (डीकॉन्फ़ाउंडिंग)। कन्फ़्यूडर के सेट की पहचान करने के लिए, (1) एक्स और वाई के बीच प्रत्येक गैर-करणीय पथ को इस सेट द्वारा अवरुद्ध किया जाना चाहिए; (2) किसी भी करणीय पथ को बाधित किए बिना; और (3) बिना कोई नकली रास्ता बनाए।[4]: 158

परिभाषा: वेरिएबल[4]: 158

परिभाषा: एक प्रारूप में वेरिएबल्स (एक्स, वाई) की एक क्रमबद्ध जोड़ी को देखते हुए, कन्फ़ाउंडर वेरिएबल्स Z का एक सेट पिछले दरवाजे के मानदंड को पूरा करता है यदि (1) कोई कन्फ़ाउंडर वेरिएबल Z, X का वंशज नहीं है और (2) X और Y के बीच सभी पिछले दरवाजे पथ कन्फ़ाउंडर्स के सेट द्वारा अवरुद्ध हैं।

यदि पिछले दरवाजे का मानदंड (एक्स, वाई) के लिए संतुष्ट है, तो एक्स और वाई को कन्फ्यूडर वेरिएबल्स के सेट द्वारा डीकॉन्फाउंड किया जाता है। कन्फ़्यूडर के अलावा किसी अन्य चर के लिए नियंत्रण करना आवश्यक नहीं है।[4]: 158 Y पर X के करणीय प्रभाव के विश्लेषण को ख़ारिज करने के लिए चर Z का एक सेट खोजने के लिए बैकडोर मानदंड एक पर्याप्त लेकिन आवश्यक शर्त नहीं है।

जब करणीय प्रारूप वास्तविकता का एक प्रशंसनीय प्रतिनिधित्व है और पिछले दरवाजे की कसौटी संतुष्ट है, तो आंशिक प्रतिगमन गुणांक का उपयोग (करणीय) पथ गुणांक (रैखिक संबंधों के लिए) के रूप में किया जा सकता है।[4]: 223[12]

[4]: 227

फ्रंटडोर समायोजन

यदि अवरुद्ध पथ के सभी तत्व अप्राप्य हैं, तो पिछले दरवाजे का पथ गणना योग्य नहीं है, लेकिन यदि आगे के सभी पथ तत्व हैं जहां कोई खुला रास्ता नहीं जुड़ता , तब , सभी का सेट एस, माप सकते हैं . प्रभावी रूप से, ऐसी स्थितियाँ हैं जहाँ के लिए प्रॉक्सी के रूप में कार्य कर सकता है .

परिभाषा: फ्रंटडोर पथ एक प्रत्यक्ष करणीय पथ है जिसके लिए डेटा सभी के लिए उपलब्ध है ,[4]: 226 सभी निर्देशित पथों को रोकता है को , यहां से कोई भी अनवरोधित पथ नहीं है को , और सभी पिछले दरवाजे के रास्ते को द्वारा अवरुद्ध हैं .

[13]

निम्नलिखित फ्रंट-डोर पथ के साथ चर पर कंडीशनिंग द्वारा एक डू एक्सप्रेशन को डू-फ्री एक्सप्रेशन में परिवर्तित करता है।[4]: 226

यह मानते हुए कि इन अवलोकनीय संभावनाओं के लिए डेटा उपलब्ध है, अंतिम संभाव्यता की गणना किसी प्रयोग के बिना, अन्य भ्रमित पथों के अस्तित्व की परवाह किए बिना और पिछले दरवाजे समायोजन के बिना की जा सकती है।[4]: 226

हस्तक्षेप

प्रश्न

प्रश्न एक विशिष्ट प्रारूप पर आधारित प्रश्न पूछे जाते हैं। इनका उत्तर आम तौर पर प्रयोग (हस्तक्षेप) करके दिया जाता है। हस्तक्षेप एक प्रारूप में एक चर के मूल्य को तय करने और परिणाम का अवलोकन करने का रूप लेते हैं। गणितीय रूप से, ऐसे प्रश्न निम्न रूप लेते हैं (उदाहरण से):[4]: 8

जहां do ऑपरेटर इंगित करता है कि प्रयोग ने टूथपेस्ट की कीमत को स्पष्ट रूप से संशोधित किया है। ग्राफ़िक रूप से, यह किसी भी करणीय कारक को रोकता है जो अन्यथा उस चर को प्रभावित करेगा। आरेखीय रूप से, यह प्रयोगात्मक चर की ओर इशारा करने वाले सभी करणीय तीरों को मिटा देता है।[4]: 40

अधिक जटिल प्रश्न संभव हैं, जिसमें do ऑपरेटर को कई वेरिएबल्स पर लागू किया जाता है (मान निश्चित होता है)।

गणना करो

डू कैलकुलस उन जोड़तोड़ों का सेट है जो एक अभिव्यक्ति को दूसरे में बदलने के लिए उपलब्ध हैं, उन अभिव्यक्तियों को बदलने के सामान्य लक्ष्य के साथ जिनमें डू ऑपरेटर होता है उन अभिव्यक्तियों में जो नहीं करते हैं। जिन अभिव्यक्तियों में डू ऑपरेटर शामिल नहीं है, उनका अनुमान प्रयोगात्मक हस्तक्षेप की आवश्यकता के बिना अकेले अवलोकन संबंधी डेटा से लगाया जा सकता है, जो महंगा, लंबा या अनैतिक भी हो सकता है (उदाहरण के लिए, विषयों को धूम्रपान करने के लिए कहना)।[4]: 231 नियमों का सेट पूरा हो गया है (इसका उपयोग इस प्रणाली में प्रत्येक सत्य कथन प्राप्त करने के लिए किया जा सकता है)।[4]: 237 एक एल्गोरिदम यह निर्धारित कर सकता है कि, किसी दिए गए प्रारूप के लिए, कोई समाधान समय जटिलता में गणना योग्य है या नहीं।[4]: 238

नियम

कैलकुलस में do ऑपरेटर से जुड़े सशर्त संभाव्यता अभिव्यक्तियों के परिवर्तन के लिए तीन नियम शामिल हैं।

नियम 1

नियम 1 टिप्पणियों को जोड़ने या हटाने की अनुमति देता है।[4]: 235

उस स्थिति में जब चर सेट Z, W से Y तक सभी पथों को अवरुद्ध कर देता है और X की ओर जाने वाले सभी तीर हटा दिए गए हैं।[4]: 234

नियम 2

नियम 2 किसी हस्तक्षेप को किसी अवलोकन से बदलने या इसके विपरीत की अनुमति देता है:[4]: 235

उस स्थिति में जब Z #डीकॉन्फाउंडिंग|बैक-डोर मानदंड को पूरा करता है।[4]: 234

नियम 3

नियम 3 हस्तक्षेपों को हटाने या जोड़ने की अनुमति देता है।[4]

उस स्थिति में जहां कोई करणीय पथ X और Y को नहीं जोड़ता है।[4]: 234 : 235

एक्सटेंशन

नियमों का तात्पर्य यह नहीं है कि किसी भी क्वेरी से उसके ऑपरेटरों को हटाया जा सकता है। उन मामलों में, ऐसे चर को प्रतिस्थापित करना संभव हो सकता है जो हेरफेर के अधीन है (उदाहरण के लिए, आहार) उस चर के स्थान पर जो हेरफेर के अधीन नहीं है (उदाहरण के लिए, रक्त कोलेस्ट्रॉल), जिसे बाद में हटाने के लिए रूपांतरित किया जा सकता है। उदाहरण:


प्रतितथ्यात्मक

प्रतितथ्यात्मक लोग उन संभावनाओं पर विचार करते हैं जो डेटा में नहीं पाई जाती हैं, जैसे कि क्या धूम्रपान न करने वाले को कैंसर हो सकता था यदि वह भारी धूम्रपान करने वाला होता। वे पर्ल की कार्य-करणीय सीढ़ी पर सबसे ऊंचे चरण हैं।

संभावित परिणाम

परिभाषा: एक चर Y के लिए संभावित परिणाम वह मान है जो Y ने व्यक्ति के लिए लिया होगा[clarification needed]यू, क्या एक्स को मान एक्स सौंपा गया था। गणितीय रूप से:[4]: 270

या .

संभावित परिणाम को व्यक्ति के स्तर पर परिभाषित किया जाता है।[4]: 270

संभावित परिणामों के लिए पारंपरिक दृष्टिकोण प्रारूप-चालित नहीं बल्कि डेटा-आधारित है, जो करणीय संबंधों को सुलझाने की इसकी क्षमता को सीमित करता है। यह करणीयात्मक प्रश्नों को लुप्त डेटा की समस्या मानता है और यहां तक ​​कि मानक परिदृश्यों के लिए भी गलत उत्तर देता है।[4]: 275

करणीय अनुमान

करणीय प्रारूप के संदर्भ में, संभावित परिणामों की व्याख्या सांख्यिकीय के बजाय करणीय के आधार पर की जाती है।

कार्य-करणीय अनुमान का पहला नियम बताता है कि संभावित परिणाम

करणीय प्रारूप एम को संशोधित करके (एक्स में तीर हटाकर) और कुछ एक्स के परिणाम की गणना करके गणना की जा सकती है। औपचारिक रूप से:[4]: 280


प्रतितथ्यात्मक आचरण करना

करणीय प्रारूप का उपयोग करके प्रतितथ्यात्मक की जांच करने में तीन चरण शामिल होते हैं।[14] प्रारूप संबंधों के स्वरूप, रैखिक या अन्यथा की परवाह किए बिना दृष्टिकोण मान्य है। जब प्रारूप संबंध पूरी तरह से निर्दिष्ट होते हैं, तो बिंदु मानों की गणना की जा सकती है। अन्य मामलों में (उदाहरण के लिए, जब केवल संभावनाएँ उपलब्ध हों) एक संभाव्यता-अंतराल विवरण की गणना की जा सकती है, जैसे कि गैर-धूम्रपान करने वाले x में कैंसर की 10-20% संभावना होगी।[4]: 279

प्रारूप दिया गया:

प्रतिगमन विश्लेषण या किसी अन्य तकनीक से प्राप्त ए और सी के मूल्यों की गणना के लिए समीकरणों को लागू किया जा सकता है, एक अवलोकन से ज्ञात मूल्यों को प्रतिस्थापित करना और अन्य चर (प्रतितथ्यात्मक) के मूल्य को ठीक करना।[4]: 278

अपहरण

यू का अनुमान लगाने के लिए अपहरणात्मक तर्क (तार्किक अनुमान जो सबसे सरल/सबसे संभावित स्पष्टीकरण खोजने के लिए अवलोकन का उपयोग करता है) को लागू करें, विशिष्ट अवलोकन पर न देखे गए चर के लिए प्रॉक्सी जो प्रतितथ्यात्मक का समर्थन करता है।[4]: 278 प्रस्तावित साक्ष्य दिए जाने पर आपकी संभावना की गणना करें।

अधिनियम

किसी विशिष्ट अवलोकन के लिए, प्रतितथ्यात्मक (जैसे, m=0) स्थापित करने के लिए do ऑपरेटर का उपयोग करें, तदनुसार समीकरणों को संशोधित करें।[4]: 278

भविष्यवाणी

संशोधित समीकरणों का उपयोग करके आउटपुट (y) के मानों की गणना करें।[4]: 278

मध्यस्थता

प्रत्यक्ष और अप्रत्यक्ष (मध्यस्थ) करणीयों को केवल प्रतितथ्यात्मक आचरण के माध्यम से ही पहचाना जा सकता है।[4]: 301 मध्यस्थता को समझने के लिए प्रत्यक्ष करणीय पर हस्तक्षेप करते समय मध्यस्थ को स्थिर रखने की आवश्यकता होती है। प्रारूप में

M, Y पर X के प्रभाव की मध्यस्थता करता है, जबकि X का भी Y पर बिना मध्यस्थता के प्रभाव पड़ता है। इस प्रकार M को स्थिर रखा जाता है, जबकि do(X) की गणना की जाती है।

यदि मध्यस्थ और परिणाम भ्रमित हैं, तो मध्यस्थता भ्रांति में मध्यस्थ पर कंडीशनिंग शामिल है, जैसा कि वे उपरोक्त प्रारूप में हैं।

रैखिक प्रारूप के लिए, अप्रत्यक्ष प्रभाव की गणना एक मध्यस्थ मार्ग के साथ सभी पथ गुणांकों के उत्पाद को लेकर की जा सकती है। कुल अप्रत्यक्ष प्रभाव की गणना व्यक्तिगत अप्रत्यक्ष प्रभावों के योग से की जाती है। रैखिक प्रारूप के लिए मध्यस्थता का संकेत तब दिया जाता है जब मध्यस्थ को शामिल किए बिना फिट किए गए समीकरण के गुणांक उस समीकरण से काफी भिन्न होते हैं जिसमें मध्यस्थ शामिल होता है।[4]: 324

सीधा प्रभाव

ऐसे प्रारूप पर प्रयोगों में, नियंत्रित प्रत्यक्ष प्रभाव (सीडीई) की गणना मध्यस्थ एम (डीओ (एम = 0)) के मूल्य को मजबूर करके और एक्स (डीओ (एक्स = 0), डू (एक्स = 1), ...) के प्रत्येक मान के लिए कुछ विषयों को यादृच्छिक रूप से निर्दिष्ट करके और वाई के परिणामी मूल्यों को देखकर की जाती है।[4]: 317

मध्यस्थ के प्रत्येक मान की एक संगत CDE होती है।

हालाँकि, प्राकृतिक प्रत्यक्ष प्रभाव की गणना करना एक बेहतर प्रयोग है। (एनडीई) यह एक्स और वाई के बीच के रिश्ते पर हस्तक्षेप करते समय एक्स और एम के बीच के रिश्ते को अछूता छोड़कर निर्धारित किया गया प्रभाव है।[4]: 318

उदाहरण के लिए, हर दूसरे वर्ष से दंत स्वास्थिक विजिट (एक्स) में वृद्धि के प्रत्यक्ष प्रभाव पर विचार करें, जो फ्लॉसिंग (एम) को प्रोत्साहित करता है। मसूड़े (वाई) स्वस्थ हो जाते हैं, या तो हाइजीनिस्ट (प्रत्यक्ष) या फ्लॉसिंग (मध्यस्थ/अप्रत्यक्ष) के करणीय। प्रयोग यह है कि स्वास्थ्य विशेषज्ञ की यात्रा को छोड़कर फ्लॉसिंग जारी रखी जाए।

अप्रत्यक्ष प्रभाव

Y पर X का अप्रत्यक्ष प्रभाव वह वृद्धि है जो हम Y में देखेंगे, जबकि X को स्थिर रखा जाएगा और M को उस मान तक बढ़ाया जाएगा जो M, X में एक इकाई वृद्धि के तहत प्राप्त करेगा।[4]: 328

अप्रत्यक्ष प्रभावों को नियंत्रित नहीं किया जा सकता क्योंकि प्रत्यक्ष पथ को किसी अन्य चर स्थिरांक को पकड़कर अक्षम नहीं किया जा सकता है। प्राकृतिक अप्रत्यक्ष प्रभाव (एनआईई) फ्लॉसिंग (एम) से मसूड़ों के स्वास्थ्य (वाई) पर प्रभाव है। एनआईई की गणना हाइजिनिस्ट और हाइजीनिस्ट के बिना फ्लॉसिंग की संभावना के बीच अंतर (फ्लॉस और नो-फ्लॉस मामलों) के योग के रूप में की जाती है, या:[4]: 321

उपरोक्त एनडीई गणना में प्रतितथ्यात्मक सबस्क्रिप्ट शामिल हैं (). अरेखीय प्रारूप के लिए, प्रतीत होता है स्पष्ट तुल्यता[4]: 322

थ्रेशोल्ड प्रभाव और बाइनरी मान जैसी विसंगतियों के करणीय लागू नहीं होता है। हालाँकि,

सभी प्रारूप संबंधों (रैखिक और अरेखीय) के लिए काम करता है। यह एनडीई को हस्तक्षेप या प्रतितथ्यात्मक सबस्क्रिप्ट के उपयोग के बिना सीधे अवलोकन डेटा से गणना करने की अनुमति देता है।[4]: 326

परिवहन क्षमता

करणीय प्रारूप डेटासेट में डेटा को एकीकृत करने के लिए एक वाहन प्रदान करते हैं, जिसे परिवहन के रूप में जाना जाता है, भले ही करणीय प्रारूप (और संबंधित डेटा) भिन्न हों। उदाहरण के लिए, सर्वेक्षण डेटा को यादृच्छिक, नियंत्रित परीक्षण डेटा के साथ विलय किया जा सकता है।[4]: 352परिवहन बाहरी वैधता के प्रश्न का समाधान प्रदान करता है, कि क्या एक अध्ययन को एक अलग संदर्भ में लागू किया जा सकता है।

जहां दो प्रारूप सभी प्रासंगिक चर पर मेल खाते हैं और एक प्रारूप का डेटा निष्पक्ष माना जाता है, एक आबादी के डेटा का उपयोग दूसरे के बारे में निष्कर्ष निकालने के लिए किया जा सकता है। अन्य मामलों में, जहां डेटा को पक्षपाती माना जाता है, पुनर्भारित करने से डेटासेट को परिवहन की अनुमति मिल सकती है। तीसरे मामले में, अधूरे डेटासेट से निष्कर्ष निकाला जा सकता है। कुछ मामलों में, बिना मापी गई जनसंख्या के बारे में निष्कर्ष निकालने के लिए कई आबादी के अध्ययन के डेटा को (परिवहन के माध्यम से) जोड़ा जा सकता है। कुछ मामलों में, कई अध्ययनों से अनुमान (उदाहरण के लिए, पी(डब्ल्यू|एक्स)) के संयोजन से निष्कर्ष की सटीकता बढ़ सकती है।[4]: 355

डू-कैलकुलस परिवहन के लिए एक सामान्य मानदंड प्रदान करता है: एक लक्ष्य चर को डू-ऑपरेशंस की एक श्रृंखला के माध्यम से किसी अन्य अभिव्यक्ति में परिवर्तित किया जा सकता है जिसमें कोई अंतर-उत्पादक चर शामिल नहीं होता है (वे जो दो आबादी को अलग करते हैं)।[4]: 355 एक समान नियम उन अध्ययनों पर लागू होता है जिनमें प्रासंगिक रूप से भिन्न प्रतिभागी होते हैं।[4]: 356

बायेसियन नेटवर्क

किसी भी करणीय प्रारूप को बायेसियन नेटवर्क के रूप में कार्यान्वित किया जा सकता है। बायेसियन नेटवर्क का उपयोग किसी घटना की व्युत्क्रम संभावना प्रदान करने के लिए किया जा सकता है (परिणाम दिया गया है, किसी विशिष्ट करणीय की संभावनाएं क्या हैं)। इसके लिए एक सशर्त संभाव्यता तालिका तैयार करने की आवश्यकता होती है, जो सभी संभावित इनपुट और परिणामों को उनकी संबंधित संभावनाओं के साथ दिखाती है।[4]: 119

उदाहरण के लिए, रोग और परीक्षण (बीमारी के लिए) के दो परिवर्तनीय प्रारूप को देखते हुए सशर्त संभाव्यता तालिका इस प्रकार बनती है:[4]: 117

Probability of a positive test for a given disease
Test
Disease Positive Negative
Negative 12 88
Positive 73 27

इस तालिका के अनुसार, जब किसी मरीज को यह बीमारी नहीं होती है, तो सकारात्मक परीक्षण की संभावना 12% होती है।

हालाँकि यह छोटी समस्याओं के लिए सुव्यवस्थित है, जैसे-जैसे चरों की संख्या और उनसे जुड़ी अवस्थाएँ बढ़ती हैं, संभाव्यता तालिका (और संबंधित गणना समय) तेजी से बढ़ती है।[4]: 121

बायेसियन नेटवर्क का उपयोग वायरलेस डेटा त्रुटि सुधार और डीएनए विश्लेषण जैसे अनुप्रयोगों में व्यावसायिक रूप से किया जाता है।[4]: 122

अपरिवर्तनीय/संदर्भ

कार्य-करणीय की एक अलग अवधारणा में अपरिवर्तनीय संबंधों की धारणा शामिल है। हस्तलिखित अंकों की पहचान के मामले में, अंकों का आकार अर्थ को नियंत्रित करता है, इस प्रकार आकार और अर्थ अपरिवर्तनीय हैं। रूप बदलने से अर्थ बदल जाता है। अन्य गुण (जैसे, रंग) नहीं हैं। इस अपरिवर्तनीयता को विभिन्न संदर्भों में उत्पन्न डेटासेट में ले जाना चाहिए (गैर-अपरिवर्तनीय गुण संदर्भ बनाते हैं)। एकत्रित डेटा सेट का उपयोग करके सीखने (करणीय-करणीय का आकलन करने) के बजाय, एक पर सीखना और दूसरे पर परीक्षण करने से वेरिएंट को अपरिवर्तनीय गुणों से अलग करने में मदद मिल सकती है।[15]


यह भी देखें

संदर्भ

  1. Karl Friston (Feb 2009). "कार्यात्मक चुंबकीय अनुनाद इमेजिंग में कारण मॉडलिंग और मस्तिष्क कनेक्टिविटी". PLOS Biology. 7 (2): e1000033. doi:10.1371/journal.pbio.1000033. PMC 2642881. PMID 19226186.
  2. 2.0 2.1 2.2 Pearl 2009.
  3. Hitchcock, Christopher (2018), "Causal Models", in Zalta, Edward N. (ed.), The Stanford Encyclopedia of Philosophy (Fall 2018 ed.), Metaphysics Research Lab, Stanford University, retrieved 2018-09-08
  4. 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19 4.20 4.21 4.22 4.23 4.24 4.25 4.26 4.27 4.28 4.29 4.30 4.31 4.32 4.33 4.34 4.35 4.36 4.37 4.38 4.39 4.40 4.41 4.42 4.43 4.44 4.45 4.46 4.47 4.48 4.49 4.50 4.51 4.52 4.53 4.54 4.55 4.56 4.57 4.58 4.59 4.60 4.61 4.62 4.63 4.64 4.65 4.66 4.67 4.68 4.69 4.70 4.71 4.72 4.73 4.74 4.75 4.76 4.77 4.78 4.79 4.80 4.81 4.82 4.83 4.84 4.85 4.86 4.87 4.88 4.89 Pearl, Judea; Mackenzie, Dana (2018-05-15). The Book of Why: The New Science of Cause and Effect (in English). Basic Books. ISBN 9780465097616.
  5. Okasha, Samir (2012-01-12). "Causation in Biology". In Beebee, Helen; Hitchcock, Christopher; Menzies, Peter (eds.). कार्य-कारण की ऑक्सफ़ोर्ड हैंडबुक (in English). Vol. 1. OUP Oxford. doi:10.1093/oxfordhb/9780199279739.001.0001. ISBN 9780191629464.
  6. Pearl, Judea (29 Oct 2019). "कारणात्मक एवं प्रतितथ्यात्मक अनुमान" (PDF). Retrieved 14 December 2020. {{cite journal}}: Cite journal requires |journal= (help)
  7. Epp, Susanna S. (2004). अनुप्रयोगों के साथ पृथक गणित (in English). Thomson-Brooks/Cole. pp. 25–26. ISBN 9780534359454.
  8. 8.0 8.1 "कारणात्मक तर्क". www.istarassessment.org. Retrieved 2 March 2016.
  9. Riegelman, R. (1979). "Contributory cause: Unnecessary and insufficient". Postgraduate Medicine. 66 (2): 177–179. doi:10.1080/00325481.1979.11715231. PMID 450828.
  10. Katan MB (March 1986). "एपोलिपोप्रोटीन ई आइसोफॉर्म, सीरम कोलेस्ट्रॉल, और कैंसर". Lancet. 1 (8479): 507–8. doi:10.1016/s0140-6736(86)92972-7. PMID 2869248. S2CID 38327985.
  11. Smith, George Davey; Ebrahim, Shah (2008). Mendelian Randomization: Genetic Variants as Instruments for Strengthening Causal Inference in Observational Studies (in English). National Academies Press (US).
  12. Pearl 2009, chapter 3-3 Controlling Confounding Bias.
  13. Pearl, Judea; Glymour, Madelyn; Jewell, Nicholas P (7 March 2016). Causal Inference in Statistics: A Primer. ISBN 978-1-119-18684-7.
  14. Pearl 2009, p. 207.
  15. Hao, Karen (May 8, 2019). "गहन अध्ययन से पता चल सकता है कि दुनिया इस तरह क्यों काम करती है". MIT Technology Review (in English). Retrieved February 10, 2020.


स्रोत

बाहरी संबंध

  1. Learning Representations using Causal Invariance (in English), ICLR, February 2020, retrieved 2020-02-10