डिरिचलेट सीमा स्थिति

From Vigyanwiki
Revision as of 20:24, 24 July 2023 by alpha>Indicwiki (Created page with "{{short description|Type of constraint on solutions to differential equations}} विभेदक समीकरणों के गणितीय अध्ययन...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

विभेदक समीकरणों के गणितीय अध्ययन में, डिरिचलेट (या प्रथम-प्रकार) सीमा स्थिति एक प्रकार की सीमा स्थिति है, जिसका नाम पीटर गुस्ताव लेज्यून डिरिचलेट (1805-1859) के नाम पर रखा गया है।[1] जब एक साधारण अंतर समीकरण या आंशिक अंतर समीकरण पर लगाया जाता है, तो यह उन मानों को निर्दिष्ट करता है जिन्हें एक समाधान को डोमेन की सीमा (टोपोलॉजी) के साथ ले जाने की आवश्यकता होती है।

परिमित तत्व विधि (एफईएम) विश्लेषण में, आवश्यक या डिरिचलेट सीमा स्थिति को एक अंतर समीकरण के भारित-अभिन्न रूप से परिभाषित किया जाता है।[2] सीमा अभिव्यक्ति में दिखाई देने वाले वजन फ़ंक्शन डब्ल्यू के समान रूप में आश्रित अज्ञात यू को प्राथमिक चर कहा जाता है, और इसका विनिर्देश आवश्यक या डिरिचलेट सीमा स्थिति का गठन करता है।

ऐसे समीकरणों का समाधान खोजने के प्रश्न को डिरिक्लेट समस्या के रूप में जाना जाता है। व्यावहारिक विज्ञान में, डिरिचलेट सीमा स्थिति को 'निश्चित सीमा स्थिति' के रूप में भी संदर्भित किया जा सकता है।

उदाहरण

ओडीई

उदाहरण के लिए, एक साधारण अंतर समीकरण के लिए,

अंतराल पर डिरिचलेट सीमा की स्थिति [a,b] प्रपत्र ले जाएं
कहाँ α और β नंबर दिए गए हैं.

पीडीई

उदाहरण के लिए, आंशिक अंतर समीकरण के लिए,

कहाँ लाप्लास ऑपरेटर, एक डोमेन पर डिरिचलेट सीमा शर्तों को दर्शाता है Ω ⊂ Rn प्रपत्र ले जाएं
कहाँ f सीमा पर परिभाषित एक ज्ञात फ़ंक्शन (गणित) है ∂Ω.

अनुप्रयोग

उदाहरण के लिए, निम्नलिखित को डिरिचलेट सीमा शर्तें माना जाएगा:

  • मैकेनिकल इंजीनियरिंग और असैनिक अभियंत्रण में (यूलर-बर्नौली बीम सिद्धांत#सीमा संबंधी विचार), जहां बीम का एक सिरा अंतरिक्ष में एक निश्चित स्थान पर रखा जाता है।
  • ऊष्मा स्थानांतरण में, जहां एक सतह को एक निश्चित तापमान पर रखा जाता है।
  • इलेक्ट्रोस्टाटिक्स में, जहां सर्किट का एक नोड एक निश्चित वोल्टेज पर रखा जाता है।
  • द्रव गतिकी में, चिपचिपे तरल पदार्थों के लिए नो-स्लिप स्थिति बताती है कि एक ठोस सीमा पर, तरल पदार्थ की सीमा के सापेक्ष शून्य वेग होगा।

अन्य सीमा शर्तें

कॉची सीमा स्थिति और मिश्रित सीमा स्थिति सहित कई अन्य सीमा स्थितियाँ संभव हैं। उत्तरार्द्ध डिरिचलेट और न्यूमैन सीमा स्थिति स्थितियों का एक संयोजन है।

यह भी देखें

संदर्भ

  1. Cheng, A.; Cheng, D. T. (2005). "सीमा तत्व विधि की विरासत और प्रारंभिक इतिहास". Engineering Analysis with Boundary Elements. 29 (3): 268–302. doi:10.1016/j.enganabound.2004.12.001.
  2. Reddy, J. N. (2009). "Second order differential equations in one dimension: Finite element models". परिमित तत्व विधि का परिचय (3rd ed.). Boston: McGraw-Hill. p. 110. ISBN 978-0-07-126761-8.