स्पाइक-ट्रिगर औसत

From Vigyanwiki

स्पाइक-ट्रिगर एवरेजिंग (एसटीए) समय-भिन्न प्रेरक प्रतिक्रिया में उत्सर्जित स्पाइक्स का उपयोग करके न्यूरॉन के प्रतिक्रिया गुणों को चिह्नित करने के लिए एक उपकरण है। एसटीए न्यूरॉन के रैखिक ग्रहणशील क्षेत्र का अनुमान प्रदान करता है। यह इलेक्ट्रोफिजियोलॉजिकल डेटा के विश्लेषण के लिए एक उपयोगी तकनीक है।

गणितीय रूप से, एसटीए स्पाइक से पहले की औसत प्रेरक है। [1][2][3][4] एसटीए की गणना करने के लिए, प्रत्येक स्पाइक से पहले की समय विंडो में प्रेरक निकाली जाती है, और परिणामी प्रेरको का औसत निकाला जाता है। एसटीए न्यूरॉन के ग्रहणशील क्षेत्र का निष्पक्ष अनुमान तभी प्रदान करता है जब उत्तेजना वितरण गोलाकार रूप से सममित हो (उदाहरण के लिए, गॉसियन श्वेत ध्वनि)।[3][5][6]


एसटीए का उपयोग रेटिनल गैंगलियन सेल, लैटरल जेनिकुलेट न्यूक्लियस में न्यूरॉन्स और स्ट्रिएट कोर्टेक्स V1 में साधारण कोशिकाओ के गुणों का वर्णन करने के लिए किया गया है। यह रेखीय-अरेखीय-पॉइसन कैस्केड प्रारूप (एलएनपी) कैस्केड प्रारूप के रेखीय चरण का अनुमान लगाने के लिए भी प्रयोग किया जा सकता है। इस दृष्टिकोण से, यह तकनीक यह भी उपयोगी है कि इसके माध्यम से विश्लेषण किया जा सकता है कि कैसे ट्रांस्क्रिप्शन फैक्टर गतिविधियां व्यक्तिगत कोशिकाओं के भीतर जीन नियंत्रण को नियंत्रित करती हैं। स्पाइक-ट्रिगर औसत को सामान्यतः "रिवर्स सहसंबंध" या "श्वेत ध्वनि विश्लेषण" के रूप में भी जाना जाता है। एसटीए को वोल्टेरा कर्नल या वीनर कर्नल शृंखला विस्तार में पहली पदार्थ के रूप में भी परिचित जाना जाता है।[7] यह रैखिक प्रतिगमन से निकटता से संबंधित है, और सामान्य परिस्थितियों में इससे एक जैसा होता है।

गणितीय परिभाषा

मानक एसटीए

यदि समय-स्थानिक प्रेरक सदिश को दर्शाएं जो 'वें समय बिन के पूर्व आता है, और उस बिन में स्पाइक की गिनती को दर्शाता है। प्रेरक संवेगों का ध्यान रखते हुए, हम मान सकते हैं कि प्रेरक सदिश का शून्य मान अर्थात्, ). यदि नहीं, तो इसे प्रत्येक सदिश से औसत प्रेरक को घटाकर शून्य-माध्य में बदला जा सकता है। एसटीए निम्नलिखित दिया गया है :

यहाँ , न्यूरॉन द्वारा उत्पन्न कुल स्पाइक्स की संख्या है।

यह समीकरण सरलतम रूप से आव्यूह रूप में व्यक्त किया जा सकता है: हम इसे इस तरह से लिख सकते हैं: चलो एक आव्यूह को निरूपित करें जिसका 'वीं पंक्ति प्रेरक सदिश है और एक कॉलम सदिश को निरूपित करता है जिसका वां तत्व है तब एसटीए निम्नलिखित रूप में लिखा जा सकता है:

श्वेत एसटीए

यदि स्टिम्युलस श्वेत ध्वनि नहीं है, बल्कि स्थान या समय के अनुसार गैर-शून्य संबंध है, तो मानक एसटीए रेखीय ग्रहणशील क्षेत्र का एक पक्षपातपूर्ण अनुमान प्रदान करता है,[5]इसलिए, स्टिम्युलस समन्वय आव्यूह के व्युत्क्रम के साथ एसटीए को श्वेत करना उपयुक्त हो सकता है। इससे स्थानिक अवलम्बन समस्या को समाधान मिलता है, यद्यपि हम फिर भी मानते हैं कि स्टिम्युलस समय के अनिर्दिष्ट है। इससे प्राप्त होने वाले अनुमानकारी को "श्वेत एसटीए के रूप में जाना जाता है, जिसका सूत्र निम्नलिखित है:

जहां पहला पद प्राकृतिक प्रेरको का व्युत्क्रम सहप्रसरण आव्यूह है और दूसरा मानक एसटीए है। तो यह आव्यूह निम्नलिखित रूप में लिखा जा सकता है

श्वेत एसटीए केवल तभी निष्पक्ष होता है जब प्रोत्साहन वितरण को सहसंबद्ध गाऊसी वितरण द्वारा वर्णित किया जा सकता है [6]सहसंबद्ध गाऊसी वितरण दीर्घवृत्त के रूप में सममित होते हैं, अर्थात एक रैखिक परिवर्तन द्वारा गोलाकार रूप से सममित बनाया जा सकता है, परंतु सभी दीर्घवृत्त सममित वितरण गाऊसी नहीं होते हैं। यह गोलाकार समरूपता की तुलना में कमज़ोर स्थिति मे होते है।

श्वेत एसटीए प्रेरक वितरण के विरुद्ध एक रैखिक न्यूनतम-वर्ग प्रतिगमन है जिसमें प्रेरक सदिशों के बीच एक रेखीय संबंध का अनुमान लगाया जाता है जो स्पाइक ट्रेन के साथ सम्बन्धित होता है।

नियमित एसटीए

व्यवहारतः, श्वेत एसटीए को नियमित करना आवश्यक हो सकता है, क्योंकि श्वेतकरण प्रेरक विमानों के द्वारा कम अन्वेषित आयामों के साथ ध्वनि को बढ़ाता है अर्थात, अक्ष जिसके साथ प्रेरक में कम विचरण होता है। इस समस्या का सामान्य समाधान रिज प्रतिगमन हो सकता है। रिज प्रतिगमन का उपयोग करके नियमित एसटीए को निम्नलिखित रूप में लिखा जा सकता है:

यहाँ पहचान आव्यूह को दर्शाता है और रिज पैरामीटर है जो नियमित करने के मात्रा को नियंत्रित करता है। इस प्रक्रिया की एक सरल बायेसियन व्याख्या रखती है: रिज प्रतिगमन एसटीए तत्वों पर पूर्व लगाने के बराबर है जिसमें वृद्धि आव्यूह के आनुपातिक सहप्रसरण के साथ शून्य-माध्य गाऊसी से पहले रिज पैरामीटर इस पूर्व के व्युत्क्रम विचरण को सेट करता है, और सामान्यतः क्रॉस-वैलिडेशन या अनुभवजन्य बेयस विधि द्वारा फिट किया जाता है।

सांख्यिकीय गुण

एलएनपी प्रारूप के अनुसार उत्पन्न प्रतिक्रियाओं के लिए, श्वेत एसटीए रैखिक ग्रहणशील क्षेत्र द्वारा फैले उप-स्थान का अनुमान प्रदान करता है। इस अनुमान के गुण इस प्रकार हैं

संगति

श्वेत एसटीए एक सुसंगत अनुमानक है, अर्थात, यह वास्तविक रैखिक उप-स्थान में परिवर्तित हो जाता है, यदि

  1. प्रोत्साहन वितरण दीर्घाकार वितरण है, उदाहरण के लिए, गाऊसी वितरण
  2. अपेक्षित एसटीए शून्य नहीं है अर्थात, गैर-रैखिकता स्पाइक-ट्रिगर प्रेरको में बदलाव लाती है।[5]

इष्टतमता

श्वेत एसटीए एक स्पर्शोन्मुख रूप से कुशल अनुमानक है यदि

  1. प्रोत्साहन वितरण गॉसियन है
  2. न्यूरॉन का अरेखीय प्रतिक्रिया फलन, .[5]घातीय है

यादृच्छिक प्रेरको के लिए, एसटीए सामान्यतः सुसंगत या कुशल नहीं होता है। ऐसे स्थितियों के लिए, अधिकतम संभावना और पारस्परिक जानकारी सूचना-आधारित अनुमानक [5][6][8] ऐसे विकसित किए गए हैं जो सुसंगत और कुशल दोनों हैं।

यह भी देखें

संदर्भ

  1. de Boer and Kuyper (1968) Triggered Correlation. IEEE Transact. Biomed. Eng., 15:169-179
  2. Marmarelis, P. Z. and Naka, K. (1972). White-noise analysis of a neuron chain: an application of the Wiener theory. Science, 175:1276-1278
  3. 3.0 3.1 Chichilnisky, E. J. (2001). A simple white noise analysis of neuronal light responses. Network: Computation in Neural Systems, 12:199-213
  4. Simoncelli, E. P., Paninski, L., Pillow, J. & Swartz, O. (2004). "Characterization of neural responses with stochastic stimuli". In M. Gazzaniga (Ed.) The Cognitive Neurosciences, III (pp. 327-338). MIT press.
  5. 5.0 5.1 5.2 5.3 5.4 Paninski, L. (2003). Convergence properties of some spike-triggered analysis techniques. Network: Computation in Neural Systems 14:437-464
  6. 6.0 6.1 6.2 Sharpee, T.O., Rust, N.C., & Bialek, W. (2004). Analyzing neural responses to natural signals: Maximally informative dimensions. Neural Computation 16:223-250
  7. Lee and Schetzen (1965). Measurement of the Wiener kernels of a non- linear system by cross-correlation. International Journal of Control, First Series, 2:237-254
  8. Kouh M. & Sharpee, T.O. (2009). Estimating linear-nonlinear models using Rényi divergences, Network: Computation in Neural Systems 20(2): 49–68


बाहरी संबंध